Answer :
First, we convert the mass from grams to kilograms. Since there are 1000 grams in a kilogram:
[tex]$$
m = \frac{140 \, \text{g}}{1000} = 0.14 \, \text{kg}
$$[/tex]
The acceleration is given as:
[tex]$$
a = 25 \, \text{m/s}^2
$$[/tex]
Now, using Newton's second law of motion:
[tex]$$
F = ma
$$[/tex]
Substitute the known values:
[tex]$$
F = 0.14 \, \text{kg} \times 25 \, \text{m/s}^2 = 3.5 \, \text{N}
$$[/tex]
Thus, the force required to accelerate the ball is [tex]$\boxed{3.5 \, \text{N}}$[/tex].
[tex]$$
m = \frac{140 \, \text{g}}{1000} = 0.14 \, \text{kg}
$$[/tex]
The acceleration is given as:
[tex]$$
a = 25 \, \text{m/s}^2
$$[/tex]
Now, using Newton's second law of motion:
[tex]$$
F = ma
$$[/tex]
Substitute the known values:
[tex]$$
F = 0.14 \, \text{kg} \times 25 \, \text{m/s}^2 = 3.5 \, \text{N}
$$[/tex]
Thus, the force required to accelerate the ball is [tex]$\boxed{3.5 \, \text{N}}$[/tex].