Answer :
To find the force needed to accelerate the ball, we can use the formula:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
Here are the steps to solve the problem:
1. Identify Given Values:
- Mass ([tex]\( m \)[/tex]) = 140 grams
- Acceleration ([tex]\( a \)[/tex]) = 25 m/s²
2. Convert Mass to Kilograms:
Since force is calculated using the International System of Units, we need to convert mass from grams to kilograms. There are 1000 grams in a kilogram.
[tex]\[
\text{Mass in kg} = \frac{140 \text{ g}}{1000} = 0.14 \text{ kg}
\][/tex]
3. Apply the Formula:
Substitute the values into the formula:
[tex]\[
F = ma = 0.14 \text{ kg} \times 25 \text{ m/s}²
\][/tex]
4. Calculate the Force:
[tex]\[
F = 3.5 \text{ N}
\][/tex]
Therefore, the force needed to accelerate the ball is 3.5 N.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
Here are the steps to solve the problem:
1. Identify Given Values:
- Mass ([tex]\( m \)[/tex]) = 140 grams
- Acceleration ([tex]\( a \)[/tex]) = 25 m/s²
2. Convert Mass to Kilograms:
Since force is calculated using the International System of Units, we need to convert mass from grams to kilograms. There are 1000 grams in a kilogram.
[tex]\[
\text{Mass in kg} = \frac{140 \text{ g}}{1000} = 0.14 \text{ kg}
\][/tex]
3. Apply the Formula:
Substitute the values into the formula:
[tex]\[
F = ma = 0.14 \text{ kg} \times 25 \text{ m/s}²
\][/tex]
4. Calculate the Force:
[tex]\[
F = 3.5 \text{ N}
\][/tex]
Therefore, the force needed to accelerate the ball is 3.5 N.