Answer :
Sure, let's solve this step-by-step.
1. Identify the given information:
- Mass of the ball, [tex]\( m = 140 \)[/tex] grams
- Acceleration, [tex]\( a = 25 \)[/tex] meters per second squared ([tex]\( m/s^2 \)[/tex])
2. Convert the mass from grams to kilograms:
Since 1 gram is equal to 0.001 kilograms,
[tex]\[
m = 140 \text{ grams} \times 0.001 \text{ kg/gram} = 0.14 \text{ kg}
\][/tex]
3. Use the formula [tex]\( F = m \times a \)[/tex] to calculate the force:
[tex]\[
F = 0.14 \text{ kg} \times 25 \text{ m/s}^2 = 3.5 \text{ N}
\][/tex]
4. Conclude the result:
The force needed to accelerate the ball at [tex]\(25 \text{ m/s}^2\)[/tex] is [tex]\( 3.5 \)[/tex] Newtons.
So, the correct option is:
[tex]\[ 3.5 \text{ N} \][/tex]
1. Identify the given information:
- Mass of the ball, [tex]\( m = 140 \)[/tex] grams
- Acceleration, [tex]\( a = 25 \)[/tex] meters per second squared ([tex]\( m/s^2 \)[/tex])
2. Convert the mass from grams to kilograms:
Since 1 gram is equal to 0.001 kilograms,
[tex]\[
m = 140 \text{ grams} \times 0.001 \text{ kg/gram} = 0.14 \text{ kg}
\][/tex]
3. Use the formula [tex]\( F = m \times a \)[/tex] to calculate the force:
[tex]\[
F = 0.14 \text{ kg} \times 25 \text{ m/s}^2 = 3.5 \text{ N}
\][/tex]
4. Conclude the result:
The force needed to accelerate the ball at [tex]\(25 \text{ m/s}^2\)[/tex] is [tex]\( 3.5 \)[/tex] Newtons.
So, the correct option is:
[tex]\[ 3.5 \text{ N} \][/tex]