Answer :

Let's go through each of the divisions one by one. We'll express the answers as both decimals and fractions, along with any remainder where appropriate.

a. [tex]60 \div 8[/tex]

  1. Convert to a fraction: [tex]\frac{60}{8} = \frac{15}{2}[/tex].

  2. As a decimal: [tex]60 \div 8 = 7.5[/tex].

b. [tex]40 \div 9[/tex]

  1. Convert to a fraction: Since [tex]9[/tex] goes into [tex]40[/tex] four times, remainder [tex]4[/tex], you get [tex]4 \frac{4}{9}[/tex].

  2. As a decimal: [tex]40 \div 9 \approx 4.44[/tex] (repeating).

c. [tex]31 \div 5[/tex]

  1. Convert to a fraction: [tex]\frac{31}{5} = 6 \frac{1}{5}[/tex].

  2. As a decimal: [tex]31 \div 5 = 6.2[/tex].

d. [tex]43 \div 2[/tex]

  1. Convert to a fraction: [tex]\frac{43}{2} = 21 \frac{1}{2}[/tex].

  2. As a decimal: [tex]43 \div 2 = 21.5[/tex].

e. [tex]66 \div 7[/tex]

  1. Convert to a fraction: Because [tex]7[/tex] goes into [tex]66[/tex] nine times, remainder [tex]3[/tex], you have [tex]9 \frac{3}{7}[/tex].

  2. As a decimal: [tex]66 \div 7 \approx 9.43[/tex] (repeating).

f. [tex]49 \div 4[/tex]

  1. Convert to a fraction: [tex]\frac{49}{4} = 12 \frac{1}{4}[/tex].

  2. As a decimal: [tex]49 \div 4 = 12.25[/tex].

In each case, we took the quotient of the division to find the whole number and calculated any remainder to represent the fraction part.