Answer :
To find the product of
[tex]$$
(x+5)(2x^2-3x+5),
$$[/tex]
we can use the distributive property (also called the FOIL method for binomials, extended here to a binomial times a trinomial).
Step 1. Multiply [tex]$x$[/tex] by each term in the second polynomial:
[tex]\[
\begin{aligned}
x \cdot 2x^2 &= 2x^3, \\
x \cdot (-3x) &= -3x^2, \\
x \cdot 5 &= 5x.
\end{aligned}
\][/tex]
Step 2. Multiply [tex]$5$[/tex] by each term in the second polynomial:
[tex]\[
\begin{aligned}
5 \cdot 2x^2 &= 10x^2, \\
5 \cdot (-3x) &= -15x, \\
5 \cdot 5 &= 25.
\end{aligned}
\][/tex]
Step 3. Combine the like terms:
Now, add all the products together:
[tex]\[
2x^3 + (-3x^2+10x^2) + (5x-15x) + 25.
\][/tex]
- The [tex]$x^2$[/tex] terms:
[tex]\[
-3x^2 + 10x^2 = 7x^2.
\][/tex]
- The [tex]$x$[/tex] terms:
[tex]\[
5x - 15x = -10x.
\][/tex]
Thus, the simplified result is:
[tex]\[
2x^3 + 7x^2 - 10x + 25.
\][/tex]
Final Answer: The product of [tex]$(x+5)(2x^2-3x+5)$[/tex] is
[tex]$$
2x^3 + 7x^2 - 10x + 25.
$$[/tex]
[tex]$$
(x+5)(2x^2-3x+5),
$$[/tex]
we can use the distributive property (also called the FOIL method for binomials, extended here to a binomial times a trinomial).
Step 1. Multiply [tex]$x$[/tex] by each term in the second polynomial:
[tex]\[
\begin{aligned}
x \cdot 2x^2 &= 2x^3, \\
x \cdot (-3x) &= -3x^2, \\
x \cdot 5 &= 5x.
\end{aligned}
\][/tex]
Step 2. Multiply [tex]$5$[/tex] by each term in the second polynomial:
[tex]\[
\begin{aligned}
5 \cdot 2x^2 &= 10x^2, \\
5 \cdot (-3x) &= -15x, \\
5 \cdot 5 &= 25.
\end{aligned}
\][/tex]
Step 3. Combine the like terms:
Now, add all the products together:
[tex]\[
2x^3 + (-3x^2+10x^2) + (5x-15x) + 25.
\][/tex]
- The [tex]$x^2$[/tex] terms:
[tex]\[
-3x^2 + 10x^2 = 7x^2.
\][/tex]
- The [tex]$x$[/tex] terms:
[tex]\[
5x - 15x = -10x.
\][/tex]
Thus, the simplified result is:
[tex]\[
2x^3 + 7x^2 - 10x + 25.
\][/tex]
Final Answer: The product of [tex]$(x+5)(2x^2-3x+5)$[/tex] is
[tex]$$
2x^3 + 7x^2 - 10x + 25.
$$[/tex]