Answer :
To solve for [tex]x[/tex] in the given equations, we will handle each equation separately.
Equation (i):
[tex]3 \times [(-6) + x] = 3 \times 6 + 3 \times 10[/tex]
First, simplify both sides of the equation:
Left side:
[tex]3 \times [(-6) + x] = 3 \times -6 + 3 \times x = -18 + 3x[/tex]Right side:
[tex]3 \times 6 + 3 \times 10 = 18 + 30 = 48[/tex]
Now equate the simplified sides:
[tex]-18 + 3x = 48[/tex]
Add 18 to both sides to isolate the term with [tex]x[/tex]:
[tex]3x = 48 + 18[/tex]
[tex]3x = 66[/tex]
Divide both sides by 3 to solve for [tex]x[/tex]:
[tex]x = \frac{66}{3} = 22[/tex]
So, [tex]x = 22[/tex] for equation (i).
Equation (iii):
[tex]x \times [6 + (-8)] = 15 \times 6 + (-8) \times 15[/tex]
First, simplify both sides of the equation:
Inside the brackets on the left side:
[tex]6 + (-8) = -2[/tex]Therefore, the left side becomes:
[tex]x \times (-2) = -2x[/tex]Simplify the right side:
[tex]15 \times 6 = 90[/tex]
[tex](-8) \times 15 = -120[/tex]Combine the results:
[tex]90 + (-120) = -30[/tex]
Equating both sides:
[tex]-2x = -30[/tex]
Divide both sides by -2 to solve for [tex]x[/tex]:
[tex]x = \frac{-30}{-2} = 15[/tex]
So, [tex]x = 15[/tex] for equation (iii).
Therefore, the solutions are [tex]x = 22[/tex] for equation (i) and [tex]x = 15[/tex] for equation (iii).