High School

Select the correct answer from each drop-down menu.

Review Seth's steps for rewriting and simplifying an expression.

Given: [tex]8x^6 \sqrt{200x^{13}} \div 2x^5 \sqrt{32x^7}[/tex]

Step 1: [tex]8x^6 \sqrt{4 \cdot 25 \cdot 2 \cdot (x^6)^2 \cdot x} \div 2x^5 \sqrt{16 \cdot 2 \cdot (x^3)^2 \cdot x}[/tex]

Step 2: [tex]8 \cdot 2 \cdot 5 \cdot x^6 \cdot x^6 \sqrt{2x} \div 2 \cdot 16 \cdot x^5 \cdot x^3 \sqrt{2x}[/tex]

Step 3: [tex]80x^{12} \sqrt{2x} \div 32x^8 \sqrt{2x}[/tex]

Step 4: [tex]\frac{80x^{12} \sqrt{2x}}{32x^8 \sqrt{2x}}[/tex]

Step 5: [tex]\frac{5}{2}x^4[/tex]

Seth's first mistake was made in [tex]\square[/tex], where he _________.

Answer :

To solve the problem and identify Seth's first mistake, let's go through his steps carefully:

Given Expression:

[tex]\[ \frac{8 x^6 \sqrt{200 x^{13}}}{2 x^5 \sqrt{32 x^7}} \][/tex]

Step 1: Break down the components inside the square roots.

Seth rewrote:

1. [tex]\(\sqrt{200 x^{13}} = \sqrt{4 \cdot 25 \cdot 2 \cdot (x^6)^2 \cdot x}\)[/tex]
2. [tex]\(\sqrt{32 x^7} = \sqrt{16 \cdot 2 \cdot (x^3)^2 \cdot x}\)[/tex]

The breakdown looks correct.

Step 2: Simplify the factors.

Seth simplified to:

1. [tex]\(8 \cdot x^6 \cdot \sqrt{4 \cdot 25 \cdot 2 \cdot (x^6)^2 \cdot x} \rightarrow 8 \cdot 2 \cdot 5 \cdot x^6 \cdot x^6 \cdot \sqrt{2x}\)[/tex]
2. [tex]\(2 \cdot x^5 \cdot \sqrt{16 \cdot 2 \cdot (x^3)^2 \cdot x} \rightarrow 2 \cdot 4 \cdot x^5 \cdot x^3 \cdot \sqrt{2x}\)[/tex]

However, Seth wrote [tex]\(2 \cdot 16 \cdot x^5 \cdot x^3\)[/tex], which is incorrect. He should have used [tex]\(2 \cdot 4\)[/tex] instead of [tex]\(2 \cdot 16\)[/tex].

Step 3: Combine terms and simplify further.

This should be:

1. [tex]\(\frac{80 x^{12} \sqrt{2x}}{8 x^8 \sqrt{2x}}\)[/tex]

By evaluating honestly, Seth's step is showing calculations that led to combining [tex]\( 32 x^8 \)[/tex] instead of [tex]\( 8 x^8 \)[/tex].

Step 4: Write as a fraction:

This step looks correct:

[tex]\[ \frac{80 x^{12} \sqrt{2x}}{32 x^8 \sqrt{2x}} \][/tex]

Step 5: Final Simplification.

Simplify the fraction:

[tex]\[ \frac{80}{32} = \frac{5}{2} \quad \text{and} \quad \frac{x^{12}}{x^8} = x^4 \][/tex]

Resulting in:

[tex]\[ \frac{5}{2} x^4 \][/tex]

Conclusion:

Seth's first mistake was in Step 2 where he incorrectly multiplied by [tex]\(16\)[/tex] instead of using the correct breakdown which should have been [tex]\(2 \cdot 4\)[/tex]. This leads to errors in further steps.