High School

6. Find the product of [tex]\left(3a^2 \cdot 4ax + x^2\right)[/tex] and [tex]\left(5x^3 - 2ay\right)[/tex]:

A. [tex]14a^2x + 23x^2x^3 \cdot 22ax^3 + 5x^4[/tex]
B. [tex]14a^2x + 23a3x^2 - 22ax^2 + 5x^4[/tex]
C. [tex]16x^3x + 23x^2x^3 - 22x^3 + 5x^4[/tex]
D. [tex]-6ax + 23ax^2 - 22ax^3 + 5x^2[/tex]

Answer :

Let's find the product of the expressions [tex]\((3a^2 \cdot 4ax + x^2)\)[/tex] and [tex]\((5x^3 - 2ay)\)[/tex].

1. Simplify the First Expression:

The first expression is [tex]\(3a^2 \cdot 4ax + x^2\)[/tex].
- Simplify [tex]\(3a^2 \cdot 4ax\)[/tex]:
[tex]\[
3a^2 \times 4a \times x = 12a^3x
\][/tex]
- The first expression becomes:
[tex]\[
12a^3x + x^2
\][/tex]

2. Write down the Second Expression:

The second expression is [tex]\(5x^3 - 2ay\)[/tex].

3. Distribute and Multiply:

To find the product, distribute each term in the first expression through the second expression.

- Multiply [tex]\(12a^3x\)[/tex] by each term in the second expression:
- [tex]\(12a^3x \times 5x^3 = 60a^3x^4\)[/tex]
- [tex]\(12a^3x \times (-2ay) = -24a^4xy\)[/tex]

- Multiply [tex]\(x^2\)[/tex] by each term in the second expression:
- [tex]\(x^2 \times 5x^3 = 5x^5\)[/tex]
- [tex]\(x^2 \times (-2ay) = -2ax^2y\)[/tex]

4. Combine all the results:

Collect all the products obtained from distributing and simplify:
[tex]\[
-24a^4xy + 60a^3x^4 - 2ax^2y + 5x^5
\][/tex]

Thus, the product of the given expressions is:
[tex]\[
-24a^4xy + 60a^3x^4 - 2ax^2y + 5x^5
\][/tex]

This doesn't exactly match any given option, as the answers either contain errors or were formatted in a non-standard way. Always ensure the solution process is followed closely for accuracy.