Answer :
To solve the expression [tex]P = \frac{\left[x^9 \cdot (x^5)^{-3}\right]^{-3}}{x^{-2} \cdot x^{4^2}}[/tex] and reduce it to one of the given options, we need to follow the laws of exponents. Let's break it down step-by-step:
Simplify the numerator:
[tex]\left[x^9 \cdot (x^5)^{-3}\right]^{-3}[/tex]
First, simplify [tex](x^5)^{-3}[/tex]. This is equivalent to [tex]x^{-15}[/tex] because when you raise a power to another power, you multiply the exponents: [tex]5 \times -3 = -15[/tex].
So, the expression becomes:
[tex]\left[x^9 \cdot x^{-15}\right]^{-3}[/tex]Combine the exponents in [tex]x^9 \cdot x^{-15}[/tex]:
[tex]x^{9-15} = x^{-6}[/tex].Now, apply the power of [tex]-3[/tex]:
[tex]\left[ x^{-6} \right]^{-3} = x^{18}[/tex]
Because [tex](-6) \times (-3) = 18[/tex].Simplify the denominator:
[tex]x^{-2} \cdot x^{4^2}[/tex]
Calculating [tex]4^2 = 16[/tex], the expression becomes:
[tex]x^{-2} \cdot x^{16}[/tex]Combine the exponents in the denominator:
[tex]x^{-2 + 16} = x^{14}[/tex].Combine the simplified numerator and denominator:
Now, combine the parts:
[tex]\frac{x^{18}}{x^{14}}[/tex]Use the property of division to subtract the exponents:
[tex]x^{18-14} = x^{4}[/tex]
The final reduced expression is [tex]x^4[/tex].
Therefore, the correct answer is (d) [tex]x^4[/tex].