College

2. Which of the following is the product of [tex](7x + 2)[/tex] and [tex](5x - 11)[/tex]?

A. [tex]12x^2 - 10x - 77x - 22[/tex]
B. [tex]35x^2 - 67x - 22[/tex]
C. [tex]12x^2 - 67x - 22[/tex]
D. [tex]35x^2 + 67x + 22[/tex]

Answer :

To find the product of [tex]\((7x + 2)\)[/tex] and [tex]\((5x - 11)\)[/tex], we can use the distributive property, often remembered as the FOIL method for multiplying binomials. Let's go through the steps:

1. First terms: Multiply the first terms in each binomial:
[tex]\[
7x \times 5x = 35x^2
\][/tex]

2. Outer terms: Multiply the outer terms:
[tex]\[
7x \times -11 = -77x
\][/tex]

3. Inner terms: Multiply the inner terms:
[tex]\[
2 \times 5x = 10x
\][/tex]

4. Last terms: Multiply the last terms:
[tex]\[
2 \times -11 = -22
\][/tex]

Now, combine all these results:
[tex]\[
35x^2 - 77x + 10x - 22
\][/tex]

Combine the like terms, which are the middle terms [tex]\(-77x\)[/tex] and [tex]\(10x\)[/tex]:
[tex]\[
35x^2 - 67x - 22
\][/tex]

So, the product of [tex]\((7x + 2)\)[/tex] and [tex]\((5x - 11)\)[/tex] is:
[tex]\[
\boxed{35x^2 - 67x - 22}
\][/tex]

The correct choice is (B) [tex]\(35x^2 - 67x - 22\)[/tex].