Answer :
To solve the problem, we need to find out the original number from the given information and then calculate 2.5% of that number.
Step 1: Determine the Original Number
The problem states that 2/3 of 1/8 of 1/15 of a number is 14. This can be expressed with the following equation:
[tex]\frac{2}{3} \times \frac{1}{8} \times \frac{1}{15} \times x = 14[/tex]
To find [tex]x[/tex], first simplify the fraction:
[tex]\frac{2}{3} \times \frac{1}{8} \times \frac{1}{15} = \frac{2}{360}[/tex]
Simplify [tex]\frac{2}{360}[/tex]:
[tex]\frac{2}{360} = \frac{1}{180}[/tex]
Now the equation is:
[tex]\frac{1}{180} \times x = 14[/tex]
To solve for [tex]x[/tex], multiply both sides by 180:
[tex]x = 14 \times 180[/tex]
Compute the value:
[tex]x = 2520[/tex]
Step 2: Find 2.5% of the Original Number
Now, calculate 2.5% of the number [tex]x = 2520[/tex]:
[tex]2.5\% \times 2520 = \frac{2.5}{100} \times 2520[/tex]
Convert 2.5% to a fraction:
[tex]\frac{2.5}{100} = \frac{25}{1000} = \frac{1}{40}[/tex]
Multiply to find the result:
[tex]\frac{1}{40} \times 2520 = 63[/tex]
Thus, 2.5% of the number is [tex]63[/tex].
Answer: The correct option is A) 63.