Answer :
Let's solve each equation step by step and find out which one gives a different value for [tex]\( x \)[/tex].
Equation A:
[tex]\[ 8.3 = -0.6x + 11.3 \][/tex]
1. Subtract 11.3 from both sides:
[tex]\[ 8.3 - 11.3 = -0.6x \][/tex]
[tex]\[ -3 = -0.6x \][/tex]
2. Divide both sides by -0.6:
[tex]\[ x = \frac{-3}{-0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
Equation B:
[tex]\[ 11.3 = 8.3 + 0.6x \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 = 0.6x \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide both sides by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
Equation C:
[tex]\[ 11.3 - 0.6x = 8.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 = 0.6x \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide both sides by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
Equation D:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 8.3 - 11.3 = 0.6x \][/tex]
[tex]\[ -3 = 0.6x \][/tex]
2. Divide both sides by 0.6:
[tex]\[ x = \frac{-3}{0.6} \][/tex]
[tex]\[ x = -5 \][/tex]
After solving all the equations, we find that Equation A, B, and C all result in [tex]\( x = 5 \)[/tex], while Equation D results in [tex]\( x = -5 \)[/tex]. Therefore, the equation that gives a different value for [tex]\( x \)[/tex] is Equation D.
Equation A:
[tex]\[ 8.3 = -0.6x + 11.3 \][/tex]
1. Subtract 11.3 from both sides:
[tex]\[ 8.3 - 11.3 = -0.6x \][/tex]
[tex]\[ -3 = -0.6x \][/tex]
2. Divide both sides by -0.6:
[tex]\[ x = \frac{-3}{-0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
Equation B:
[tex]\[ 11.3 = 8.3 + 0.6x \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 = 0.6x \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide both sides by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
Equation C:
[tex]\[ 11.3 - 0.6x = 8.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 11.3 - 8.3 = 0.6x \][/tex]
[tex]\[ 3 = 0.6x \][/tex]
2. Divide both sides by 0.6:
[tex]\[ x = \frac{3}{0.6} \][/tex]
[tex]\[ x = 5 \][/tex]
Equation D:
[tex]\[ 8.3 - 0.6x = 11.3 \][/tex]
1. Subtract 8.3 from both sides:
[tex]\[ 8.3 - 11.3 = 0.6x \][/tex]
[tex]\[ -3 = 0.6x \][/tex]
2. Divide both sides by 0.6:
[tex]\[ x = \frac{-3}{0.6} \][/tex]
[tex]\[ x = -5 \][/tex]
After solving all the equations, we find that Equation A, B, and C all result in [tex]\( x = 5 \)[/tex], while Equation D results in [tex]\( x = -5 \)[/tex]. Therefore, the equation that gives a different value for [tex]\( x \)[/tex] is Equation D.