Answer :
To find [tex]\((f \cdot g)(x)\)[/tex], we need to multiply the two polynomials given, [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
Given:
[tex]\[ f(x) = 7x^3 - 5x^2 + 42x - 30 \][/tex]
[tex]\[ g(x) = 7x - 5 \][/tex]
Now, we'll perform polynomial multiplication between these two expressions:
1. Multiply each term of [tex]\(g(x)\)[/tex] by each term of [tex]\(f(x)\)[/tex]:
- Start with the highest degree term from [tex]\(g(x)\)[/tex], which is [tex]\(7x\)[/tex]:
- [tex]\(7x \cdot 7x^3 = 49x^4\)[/tex]
- [tex]\(7x \cdot (-5x^2) = -35x^3\)[/tex]
- [tex]\(7x \cdot 42x = 294x^2\)[/tex]
- [tex]\(7x \cdot (-30) = -210x\)[/tex]
2. Now multiply the constant term [tex]\(-5\)[/tex] from [tex]\(g(x)\)[/tex] by each term of [tex]\(f(x)\)[/tex]:
- [tex]\(-5 \cdot 7x^3 = -35x^3\)[/tex]
- [tex]\(-5 \cdot (-5x^2) = 25x^2\)[/tex]
- [tex]\(-5 \cdot 42x = -210x\)[/tex]
- [tex]\(-5 \cdot (-30) = 150\)[/tex]
3. Combine all the terms from the distributed multiplication:
- [tex]\(49x^4\)[/tex]
- [tex]\(-35x^3 + (-35x^3) = -70x^3\)[/tex]
- [tex]\(294x^2 + 25x^2 = 319x^2\)[/tex]
- [tex]\(-210x + (-210x) = -420x\)[/tex]
- [tex]\(150\)[/tex]
4. Write the resulting polynomial expression:
[tex]\[
(f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150
\][/tex]
Therefore, the product of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], [tex]\((f \cdot g)(x)\)[/tex], is [tex]\[49x^4 - 70x^3 + 319x^2 - 420x + 150\][/tex]. This matches the correct option provided earlier.
Given:
[tex]\[ f(x) = 7x^3 - 5x^2 + 42x - 30 \][/tex]
[tex]\[ g(x) = 7x - 5 \][/tex]
Now, we'll perform polynomial multiplication between these two expressions:
1. Multiply each term of [tex]\(g(x)\)[/tex] by each term of [tex]\(f(x)\)[/tex]:
- Start with the highest degree term from [tex]\(g(x)\)[/tex], which is [tex]\(7x\)[/tex]:
- [tex]\(7x \cdot 7x^3 = 49x^4\)[/tex]
- [tex]\(7x \cdot (-5x^2) = -35x^3\)[/tex]
- [tex]\(7x \cdot 42x = 294x^2\)[/tex]
- [tex]\(7x \cdot (-30) = -210x\)[/tex]
2. Now multiply the constant term [tex]\(-5\)[/tex] from [tex]\(g(x)\)[/tex] by each term of [tex]\(f(x)\)[/tex]:
- [tex]\(-5 \cdot 7x^3 = -35x^3\)[/tex]
- [tex]\(-5 \cdot (-5x^2) = 25x^2\)[/tex]
- [tex]\(-5 \cdot 42x = -210x\)[/tex]
- [tex]\(-5 \cdot (-30) = 150\)[/tex]
3. Combine all the terms from the distributed multiplication:
- [tex]\(49x^4\)[/tex]
- [tex]\(-35x^3 + (-35x^3) = -70x^3\)[/tex]
- [tex]\(294x^2 + 25x^2 = 319x^2\)[/tex]
- [tex]\(-210x + (-210x) = -420x\)[/tex]
- [tex]\(150\)[/tex]
4. Write the resulting polynomial expression:
[tex]\[
(f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150
\][/tex]
Therefore, the product of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], [tex]\((f \cdot g)(x)\)[/tex], is [tex]\[49x^4 - 70x^3 + 319x^2 - 420x + 150\][/tex]. This matches the correct option provided earlier.