High School

108 g of [tex]$Br_2$[/tex] react with 98.2 g of [tex]$KI$[/tex], producing 72.1 g of [tex]$I_2$[/tex]. What is the theoretical yield of [tex]$I_2$[/tex]?

A. 72.1 g
B. 150.9 g
C. 172 g
D. 75.1 g

Answer :

We start with the balanced chemical equation

[tex]$$
\text{Br}_2 + 2\,\text{KI} \longrightarrow \text{I}_2 + 2\,\text{KBr}.
$$[/tex]

Step 1. Calculate the moles of each reactant.

For bromine ([tex]$\text{Br}_2$[/tex]), the molar mass is approximately [tex]$159.8 \, \text{g/mol}$[/tex]. Given [tex]$108 \, \text{g}$[/tex] of [tex]$\text{Br}_2$[/tex], the moles of [tex]$\text{Br}_2$[/tex] are

[tex]$$
\text{moles of } \text{Br}_2 = \frac{108 \, \text{g}}{159.8 \, \text{g/mol}} \approx 0.6758 \, \text{mol}.
$$[/tex]

For potassium iodide ([tex]$\text{KI}$[/tex]), the molar mass is approximately [tex]$166.0 \, \text{g/mol}$[/tex]. Given [tex]$98.2 \, \text{g}$[/tex] of [tex]$\text{KI}$[/tex], the moles of [tex]$\text{KI}$[/tex] are

[tex]$$
\text{moles of } \text{KI} = \frac{98.2 \, \text{g}}{166.0 \, \text{g/mol}} \approx 0.5916 \, \text{mol}.
$$[/tex]

Step 2. Identify the limiting reagent.

The balanced equation shows that [tex]$1 \, \text{mol}$[/tex] of [tex]$\text{Br}_2$[/tex] requires [tex]$2 \, \text{mol}$[/tex] of [tex]$\text{KI}$[/tex]. Therefore, for the available [tex]$\text{Br}_2$[/tex]:

[tex]$$
\text{Required moles of } \text{KI} = 0.6758 \, \text{mol} \times 2 \approx 1.3516 \, \text{mol}.
$$[/tex]

Since only [tex]$0.5916 \, \text{mol}$[/tex] of [tex]$\text{KI}$[/tex] is available, [tex]$\text{KI}$[/tex] is the limiting reagent.

Step 3. Determine the moles of [tex]$\text{I}_2$[/tex] produced.

The reaction shows that [tex]$2 \, \text{mol}$[/tex] of [tex]$\text{KI}$[/tex] produce [tex]$1 \, \text{mol}$[/tex] of [tex]$\text{I}_2$[/tex]. Therefore, the moles of [tex]$\text{I}_2$[/tex] formed are

[tex]$$
\text{moles of } \text{I}_2 = \frac{0.5916 \, \text{mol}}{2} \approx 0.2958 \, \text{mol}.
$$[/tex]

Step 4. Calculate the theoretical yield of [tex]$\text{I}_2$[/tex].

The molar mass of [tex]$\text{I}_2$[/tex] is approximately [tex]$253.8 \, \text{g/mol}$[/tex]. Thus, the theoretical mass of [tex]$\text{I}_2$[/tex] is

[tex]$$
\text{theoretical yield} = 0.2958 \, \text{mol} \times 253.8 \, \text{g/mol} \approx 75.07 \, \text{g}.
$$[/tex]

Rounding the result, the theoretical yield of [tex]$\text{I}_2$[/tex] is approximately [tex]$75.1 \, \text{g}$[/tex].

The correct answer is therefore [tex]$\boxed{75.1 \, \text{g}}$[/tex].