Answer :
The number 27,707,807 in words is: twenty-seven million, seven hundred seven thousand, eight hundred seven.
To compare the fractions, we need to express them with a common denominator or simplify them.
a) [tex]\frac{2}{4}[/tex] and [tex]\frac{3}{6}[/tex]:
- Simplify both fractions:
[tex]\frac{2}{4} = \frac{1}{2}[/tex] and [tex]\frac{3}{6} = \frac{1}{2}[/tex].
- So, [tex]\frac{2}{4} = \frac{3}{6}[/tex].
b) [tex]\frac{60}{25}[/tex] and [tex]\frac{60}{132}[/tex]:
- Simplify [tex]\frac{60}{25} = \frac{12}{5}[/tex] and [tex]\frac{60}{132} = \frac{5}{11}[/tex].
- To compare, [tex]\frac{12}{5}[/tex] (which is greater than 2) is greater than [tex]\frac{5}{11}[/tex] (which is less than 1).
- So, [tex]\frac{60}{25} > \frac{60}{132}[/tex].
- Determining the place value for each digit in the number 201.789:
a) 1: The place value is the thousandths place.
b) 8: The place value is the hundredths place.
c) 7: The place value is the tenths place.
- To use a factor tree to decompose 256 into prime factors:
- Start with 256 and keep dividing by 2 (the smallest prime number):
- [tex]256 \div 2 = 128[/tex]
- [tex]128 \div 2 = 64[/tex]
- [tex]64 \div 2 = 32[/tex]
- [tex]32 \div 2 = 16[/tex]
- [tex]16 \div 2 = 8[/tex]
- [tex]8 \div 2 = 4[/tex]
- [tex]4 \div 2 = 2[/tex]
- [tex]2 \div 2 = 1[/tex]
- So, 256 = [tex]2^8[/tex].
- Evaluate [tex][\left(\frac{1}{4} - \frac{2}{3}\right) - \frac{5}{12} + \frac{1}{4}][/tex]:
- First, compute [tex]\frac{1}{4} - \frac{2}{3}[/tex]:
[tex]\frac{1}{4} = \frac{3}{12}, \quad \frac{2}{3} = \frac{8}{12}[/tex]
[tex]\frac{1}{4} - \frac{2}{3} = \frac{3}{12} - \frac{8}{12} = -\frac{5}{12}[/tex] - Then, together with [tex]-\frac{5}{12}[/tex]:
[tex]-\frac{5}{12} - \frac{5}{12} = -\frac{10}{12} = -\frac{5}{6}[/tex] - Finally add [tex]\frac{1}{4}[/tex]:
[tex]-\frac{5}{6} + \frac{1}{4} = -\frac{10}{12} + \frac{3}{12} = -\frac{7}{12}[/tex]
- To find the average distance a car travels for every distance:
- Given: [tex]8\frac{1}{8} = \frac{65}{8}[/tex] litres covers [tex]5\frac{1}{3} = \frac{16}{3}[/tex] km.
- Average distance per litre = [tex]\frac{\frac{16}{3}}{\frac{65}{8}} = \frac{16}{3} \times \frac{8}{65} = \frac{128}{195}[/tex] km per litre.
- Performing operations using a number line:
a) [tex](-10) - (-3) = -10 + 3 = -7[/tex].
b) [tex](-3) - (-4) = -3 + 4 = 1[/tex].
c) [tex](+1) - (-8) = 1 + 8 = 9[/tex].
a) Let's find the two-digit number:
- Let the tens digit be [tex]x[/tex] and the ones digit [tex]1.25x[/tex].
- Equation: [tex]x + 1.25x = 9[/tex].
- [tex]2.25x = 9[/tex] so [tex]x = 4[/tex]. Therefore, the ones digit is [tex]5[/tex] (as [tex]1.25 \times 4 = 5[/tex]).
- The number is 45.
b) Positive difference between the digits: [tex]5 - 4 = 1[/tex].
- Maximum quotient by division: [tex]\frac{5}{4} = 1.25[/tex].
- Product: [tex]1 \times 1.25 = 1.25[/tex].