Answer :
Let's evaluate the expressions one by one.
Evaluate the expression [tex]4x^2 + 3x[/tex] for [tex]x = 6[/tex].
Substitute [tex]x = 6[/tex] into the expression:
[tex]4(6)^2 + 3(6)[/tex]
First, calculate [tex](6)^2[/tex]:
[tex]6^2 = 36[/tex]
Now substitute 36 back:
[tex]4 imes 36 + 3 imes 6[/tex]
Calculate [tex]4 imes 36[/tex]:
[tex]144[/tex]
Calculate [tex]3 imes 6[/tex]:
[tex]18[/tex]
Finally, add the two results:
[tex]144 + 18 = 162[/tex]
So, when [tex]x = 6[/tex], the expression evaluates to [tex]162[/tex].
Evaluate the expression [tex]\frac{56}{x} + 3y[/tex] for [tex]x = 4[/tex] and [tex]y = 3[/tex].
Substitute [tex]x = 4[/tex] and [tex]y = 3[/tex] into the expression:
[tex]\frac{56}{4} + 3(3)[/tex]
First, calculate [tex]\frac{56}{4}[/tex]:
[tex]14[/tex]
Now calculate [tex]3 imes 3[/tex]:
[tex]9[/tex]
Add the two results:
[tex]14 + 9 = 23[/tex]
Therefore, when [tex]x = 4[/tex] and [tex]y = 3[/tex], the expression evaluates to [tex]23[/tex].
The expression [tex]7d[/tex] gives the number of days in [tex]d[/tex] weeks. Evaluate [tex]7d[/tex] for [tex]d = 12[/tex]. How many days are in 12 weeks?
Substitute [tex]d = 12[/tex] into the expression:
[tex]7 imes 12[/tex]
Calculate:
[tex]84[/tex]
So, there are [tex]84[/tex] days in 12 weeks.