College

Find [tex]$f(5)$[/tex] for [tex]$f(x) = \frac{1}{9}(3)^x$[/tex].

A. 27
B. 9
C. 3
D. 81

Answer :

To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9} \times 3^x \)[/tex], we can follow these steps:

1. Begin with the given function:
[tex]\[ f(x) = \frac{1}{9} \times 3^x \][/tex]

2. Substitute [tex]\( x = 5 \)[/tex] into the function to find [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{1}{9} \times 3^5 \][/tex]

3. Calculate [tex]\( 3^5 \)[/tex]:
[tex]\[ 3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243 \][/tex]

4. Multiply the result by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[ \frac{1}{9} \times 243 = \frac{243}{9} \][/tex]

5. Divide 243 by 9 to simplify:
[tex]\[ \frac{243}{9} = 27 \][/tex]

Therefore, the value of [tex]\( f(5) \)[/tex] is 27. So, the answer is [tex]\(\boxed{27}\)[/tex].