College

You wish to test the following claim [tex]H_a[/tex] at a significance level of [tex]\alpha=0.01[/tex].

[tex]
\begin{array}{l}
H_0: \mu_1 = \mu_2 \\
H_a: \mu_1 \textless \mu_2
\end{array}
[/tex]

You obtain the following two samples of data.

**Sample #1**

[tex]
\begin{array}{|r|r|r|r|}
\hline
72 & 63.2 & 58.4 & 73.2 \\
\hline
62.7 & 69.2 & 76.6 & 73.5 \\
\hline
73.5 & 70.6 & 83 & 57.5 \\
\hline
86.9 & 78.4 & 77.5 & 70 \\
\hline
78.4 & 59.3 & 76.6 & 78.4 \\
\hline
82.6 & 74.5 & 94.2 & 69.6 \\
\hline
75.4 & 86.9 & 71.3 & 75.1 \\
\hline
77.5 & 59.3 & 96.2 & 71 \\
\hline
94.2 & 83.7 & 78.4 & 77.8 \\
\hline
67.4 & 71.6 & 99.1 & 97.5 \\
\hline
96.2 & 86.1 & 67 & 90.5 \\
\hline
65.2 & 51.4 & 66.5 & 91.1 \\
\hline
82.6 & 68.1 & 104.4 & 69.6 \\
\hline
66.5 & 97.5 & 85.2 & 91.8 \\
\hline
\end{array}
[/tex]

**Sample #2**

[tex]
\begin{array}{|r|r|r|r|}
\hline
62.9 & 64 & 96.5 & 105.8 \\
\hline
66.7 & 64.6 & 68.2 & 75.6 \\
\hline
97.3 & 59.5 & 71.4 & 69.6 \\
\hline
76 & 82.1 & 91.7 & 64 \\
\hline
74.3 & 78.8 & 68.7 & 71.8 \\
\hline
67.2 & 105.8 & 88 & 67.2 \\
\hline
75.6 & 64 & 85.6 & 77.2 \\
\hline
57 & 69.6 & 56 & 84.2 \\
\hline
79.6 & 85.6 & 72.7 & 64 \\
\hline
102.6 & 90.6 & 79.2 & 89 \\
\hline
100.2 & 88 & 93 & 76 \\
\hline
75.6 & 64 & 67.2 & 95.7 \\
\hline
59.5 & 56 & 95 & 88 \\
\hline
64 & 69.2 & 95.7 & 99.2 \\
\hline
74.3 & & & \\
\hline
\end{array}
[/tex]

1. What is the test statistic for this sample? (Report answer accurate to three decimal places.)
Test statistic [tex]= \square[/tex]

2. What is the [tex]p[/tex]-value for this sample? For this calculation, use the degrees of freedom reported from the technology you are using. (Report answer accurate to four decimal places.)
[tex]p[/tex]-value [tex]= \square[/tex]

The [tex]p[/tex]-value is...

Answer :

We wish to test

[tex]$$
\begin{aligned}
H_0 &: \mu_1 = \mu_2,\\[1mm]
H_a &: \mu_1 < \mu_2,
\end{aligned}
$$[/tex]

using data from two independent samples at a significance level of [tex]$\alpha = 0.01$[/tex].

The procedure is as follows:

1. Compute Sample Statistics.
For each sample, calculate the sample mean, denoted by [tex]$\bar{x}_1$[/tex] and [tex]$\bar{x}_2$[/tex], the sample variance [tex]$s_1^2$[/tex] and [tex]$s_2^2$[/tex], and note the sample sizes [tex]$n_1$[/tex] and [tex]$n_2$[/tex].

2. Welch’s Two-Sample [tex]$t$[/tex]‑Test.
Since we do not assume equal variances, we use Welch’s [tex]$t$[/tex]‑test. The test statistic is given by

[tex]$$
t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.
$$[/tex]

3. Degrees of Freedom.
The degrees of freedom for Welch’s test are approximated by the Welch–Satterthwaite equation:

[tex]$$
df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1-1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2-1}}.
$$[/tex]

4. One-Tailed [tex]$p$[/tex]-Value.
The two-sample [tex]$t$[/tex]‑test typically provides a two-tailed [tex]$p$[/tex]‑value. Since our alternative hypothesis is [tex]$H_a: \mu_1 < \mu_2$[/tex], we adjust the two-tailed [tex]$p$[/tex]‑value to obtain a one-tailed [tex]$p$[/tex]‑value. In this case, if the test statistic is negative then the one-tailed [tex]$p$[/tex]‑value is half of the two-tailed value.

After performing the necessary calculations from the sample data, the computed values (rounded as requested) are:

- The test statistic is

[tex]$$
t \approx -0.229.
$$[/tex]

- The corresponding one-tailed [tex]$p$[/tex]‑value is

[tex]$$
p \approx 0.4097.
$$[/tex]

Since the [tex]$p$[/tex]-value is quite high, we do not reject [tex]$H_0$[/tex] at the [tex]$\alpha=0.01$[/tex] level.

Thus, the final answers are:

Test statistic [tex]$=$[/tex] [tex]$-0.229$[/tex]

[tex]$p$[/tex]-value [tex]$=$[/tex] [tex]$0.4097$[/tex]

The [tex]$p$[/tex]-value is greater than [tex]$\alpha = 0.01$[/tex], indicating that there is not enough evidence to support the claim that [tex]$\mu_1 < \mu_2$[/tex].