High School

You are working in a pharmacy and need to create a table for dosage amounts of a certain drug. The recommended dosage is 40 milligrams per 2.2 pounds of body weight, divided into three daily doses, taken every 8 hours. You need entries for children weighing 10 pounds, 15 pounds, and 30 pounds. The drug is available in a [tex]$200 \text{ mg} / 5 \text{ ml}$[/tex] formula. If 1 teaspoon equals 5 ml, how many teaspoons are required for each entry? Round your answer to the nearest [tex]$\frac{1}{4}$[/tex] teaspoon.

A. [tex]1, 1 \frac{1}{2}, 2 \frac{3}{4}[/tex]

B. [tex]181,272,545 \cdot 5[/tex]

C. [tex]10, 15, 30[/tex]

D. [tex]4.5, 7, 13[/tex]

Answer :

We begin by calculating the dosage (in milligrams) per dose for a child of weight [tex]$w$[/tex] pounds. The recommendation is to give 40 mg per 2.2 pounds. Thus, the milligram dose is

[tex]$$
\text{dose}_{\text{mg}} = \frac{w}{2.2} \times 40.
$$[/tex]

Since the drug comes in a formulation of 200 mg in 5 mL, its concentration is

[tex]$$
\frac{200 \text{ mg}}{5 \text{ mL}} = 40 \text{ mg/mL}.
$$[/tex]

To convert the milligram dose to a volume in milliliters, we use

[tex]$$
\text{dose}_{\text{mL}} = \frac{\text{dose}_{\text{mg}}}{40}.
$$[/tex]

Knowing that 1 teaspoon equals 5 mL, the corresponding dose in teaspoons is

[tex]$$
\text{dose}_{\text{tsp}} = \frac{\text{dose}_{\text{mL}}}{5} = \frac{\text{dose}_{\text{mg}}}{200}.
$$[/tex]

Substitute the expression for [tex]$\text{dose}_{\text{mg}}$[/tex]:

[tex]$$
\text{dose}_{\text{tsp}} = \frac{\frac{w}{2.2} \times 40}{200} = \frac{w}{2.2} \times \frac{40}{200} = \frac{w}{2.2} \times 0.2.
$$[/tex]

Now, we calculate the dosage for each given weight and then round upward to the nearest [tex]$\frac{1}{4}$[/tex] teaspoon.

1. For [tex]$w = 10$[/tex] pounds:
[tex]$$
\text{dose}_{\text{tsp}} = \frac{10}{2.2} \times 0.2 \approx 0.9091 \text{ teaspoons}.
$$[/tex]
Rounding upward to the nearest quarter teaspoon, we get:
[tex]$$
1.00 \text{ teaspoon}.
$$[/tex]

2. For [tex]$w = 15$[/tex] pounds:
[tex]$$
\text{dose}_{\text{tsp}} = \frac{15}{2.2} \times 0.2 \approx 1.3636 \text{ teaspoons}.
$$[/tex]
Rounding upward gives:
[tex]$$
1.50 \text{ teaspoons}.
$$[/tex]

3. For [tex]$w = 30$[/tex] pounds:
[tex]$$
\text{dose}_{\text{tsp}} = \frac{30}{2.2} \times 0.2 \approx 2.7273 \text{ teaspoons}.
$$[/tex]
Rounding upward results in:
[tex]$$
2.75 \text{ teaspoons}.
$$[/tex]

Thus, the required doses in teaspoons for the children weighing 10, 15, and 30 pounds are

[tex]$$
1, \; 1\tfrac{1}{2}, \; \text{and} \; 2\tfrac{3}{4} \text{ teaspoons, respectively}.
$$[/tex]

This corresponds to option A.