Write the equivalent fractions.

22. [tex]\(\frac{3}{4} = \frac{12}{16}\)[/tex]

23. [tex]\(\frac{1}{8} = \frac{3}{24}\)[/tex]

24. [tex]\(\frac{2}{5} = \frac{6}{15}\)[/tex]

25. [tex]\(\frac{9}{10} = \frac{27}{30}\)[/tex]

26. [tex]\(\frac{5}{12} = \frac{15}{36}\)[/tex]

27. [tex]\(\frac{2}{7} = \frac{4}{14} = \frac{8}{28} = \frac{10}{42} = \frac{14}{49} = \frac{18}{63}\)[/tex]

28. [tex]\(\frac{4}{9} = \frac{8}{18} = \frac{16}{36} = \frac{36}{81}\)[/tex]

29. [tex]\(\frac{1}{5} = \frac{3}{15} = \frac{7}{35} = \frac{9}{45} = \frac{11}{55}\)[/tex]

30. [tex]\(\frac{3}{11} = \frac{6}{22} = \frac{9}{33} = \frac{12}{44} = \frac{15}{55} = \frac{21}{77}\)[/tex]

Answer :

Let's work through the given fractions and find the missing equivalent fractions.

### 28. Equivalent Fractions for [tex]\( \frac{4}{9} \)[/tex]

1. Finding the missing number for [tex]\( \frac{8}{x} \)[/tex]:
- We know that [tex]\( \frac{4}{9} = \frac{8}{x} \)[/tex].
- By cross-multiplying, [tex]\( 4 \times x = 8 \times 9 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x = \frac{8 \times 9}{4} = 18 \)[/tex].

2. Finding the missing number for [tex]\( \frac{16}{x} \)[/tex]:
- We know that [tex]\( \frac{4}{9} = \frac{16}{x} \)[/tex].
- By cross-multiplying, [tex]\( 4 \times x = 16 \times 9 \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x = \frac{16 \times 9}{4} = 36 \)[/tex].

3. Fraction [tex]\( \frac{36}{y} \)[/tex] is already a complete identity so we don't need additional calculation.

### 29. Equivalent Fractions for [tex]\( \frac{1}{5} \)[/tex]

1. Finding the missing number for [tex]\( \frac{x}{15} \)[/tex]:
- We know that [tex]\( \frac{1}{5} = \frac{x}{15} \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x = \frac{1 \times 15}{5} = 3 \)[/tex].

2. Finding the missing number for [tex]\( \frac{5}{x} \)[/tex]:
- We know that [tex]\( \frac{1}{5} = \frac{5}{x} \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x = \frac{5 \times 5}{1} = 25 \)[/tex].

3. Fraction [tex]\( \frac{y}{45} \)[/tex] is complete so we don't need calculation here.

4. Finding the missing number for [tex]\( \frac{11}{z} \)[/tex]:
- We know that [tex]\( \frac{1}{5} = \frac{11}{z} \)[/tex].
- Solving for [tex]\( z \)[/tex], we get [tex]\( z = \frac{11 \times 5}{1} = 55 \)[/tex].

### 30. Equivalent Fractions for [tex]\( \frac{3}{11} \)[/tex]

1. Finding the missing number for [tex]\( \frac{x}{22} \)[/tex]:
- We know that [tex]\( \frac{3}{11} = \frac{x}{22} \)[/tex].
- Solving for [tex]\( x \)[/tex], we get [tex]\( x = \frac{3 \times 22}{11} = 6 \)[/tex].

2. Finding the missing number for [tex]\( \frac{y}{33} \)[/tex]:
- We know that [tex]\( \frac{3}{11} = \frac{y}{33} \)[/tex].
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \frac{3 \times 33}{11} = 9 \)[/tex].

3. Fraction [tex]\( \frac{12}{z} \)[/tex] is complete so we don't need calculation here.

4. Finding the missing number for [tex]\( \frac{w}{55} \)[/tex]:
- We know that [tex]\( \frac{3}{11} = \frac{w}{55} \)[/tex].
- Solving for [tex]\( w \)[/tex], we get [tex]\( w = \frac{3 \times 55}{11} = 15 \)[/tex].

By following these steps, the calculated missing numbers are [tex]\(18\)[/tex], [tex]\(36\)[/tex], [tex]\(3\)[/tex], [tex]\(25\)[/tex], [tex]\(55\)[/tex], [tex]\(6\)[/tex], [tex]\(9\)[/tex], and [tex]\(15\)[/tex] respectively for the given fractions.