College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Write the equivalent fractions.

22. [tex]\frac{3}{4} = \frac{12}{16}[/tex]

23. [tex]\frac{1}{8} = \frac{3}{24}[/tex]

24. [tex]\frac{2}{5} = \frac{6}{15}[/tex]

25. [tex]\frac{9}{10} = \frac{27}{30}[/tex]

26. [tex]\frac{5}{12} = \frac{15}{36}[/tex]

27. [tex]\frac{2}{7} = \frac{4}{14} = \frac{8}{28} = \frac{11}{42} = \frac{14}{49} = \frac{18}{63}[/tex]

28. [tex]\frac{4}{9} = \frac{8}{18} = \frac{16}{36} = \frac{32}{72} = \frac{36}{81}[/tex]

29. [tex]\frac{1}{5} = \frac{3}{15} = \frac{5}{25} = \frac{9}{45} = \frac{11}{55}[/tex]

30. [tex]\frac{3}{11} = \frac{6}{22} = \frac{9}{33} = \frac{12}{44} = \frac{15}{55} = \frac{21}{77}[/tex]

Answer :

Let's solve the given fractions step-by-step to find their equivalent fractions.

### 22. [tex]\(\frac{3}{4} = \frac{12}{16}\)[/tex]
To verify this, we need to see if [tex]\(\frac{3}{4}\)[/tex] is equivalent to [tex]\(\frac{12}{16}\)[/tex].
- Multiply both the numerator and the denominator of [tex]\(\frac{3}{4}\)[/tex] by 4:
[tex]\(\frac{3 \times 4}{4 \times 4} = \frac{12}{16}\)[/tex].
- These fractions are equivalent.

### 23. [tex]\(\frac{1}{8} = \frac{3}{24}\)[/tex]
To verify the equivalence:
- Multiply both the numerator and the denominator of [tex]\(\frac{1}{8}\)[/tex] by 3:
[tex]\(\frac{1 \times 3}{8 \times 3} = \frac{3}{24}\)[/tex].
- These fractions are equivalent.

### 24. [tex]\(\frac{2}{5} = \frac{6}{15}\)[/tex]
To verify the equivalence:
- Multiply both the numerator and the denominator of [tex]\(\frac{2}{5}\)[/tex] by 3:
[tex]\(\frac{2 \times 3}{5 \times 3} = \frac{6}{15}\)[/tex].
- These fractions are equivalent.

### 25. [tex]\(\frac{9}{10} = \frac{27}{30}\)[/tex]
To verify the equivalence:
- Multiply both the numerator and the denominator of [tex]\(\frac{9}{10}\)[/tex] by 3:
[tex]\(\frac{9 \times 3}{10 \times 3} = \frac{27}{30}\)[/tex].
- These fractions are equivalent.

### 26. [tex]\(\frac{5}{12} = \frac{15}{36}\)[/tex]
To verify the equivalence:
- Multiply both the numerator and the denominator of [tex]\(\frac{5}{12}\)[/tex] by 3:
[tex]\(\frac{5 \times 3}{12 \times 3} = \frac{15}{36}\)[/tex].
- These fractions are equivalent.

### 27. [tex]\(\frac{2}{7} = \frac{4}{14} = \frac{8}{28} = \frac{110}{42} = \frac{14}{82} = \frac{18}{164}\)[/tex]
We'll check each fraction:
- [tex]\(\frac{4}{14}\)[/tex] and [tex]\(\frac{8}{28}\)[/tex] are equivalent to [tex]\(\frac{2}{7}\)[/tex], but [tex]\(\frac{110}{42}\)[/tex], [tex]\(\frac{14}{82}\)[/tex], and [tex]\(\frac{18}{164}\)[/tex] are not equivalent to [tex]\(\frac{2}{7}\)[/tex] when simplified.

### 28. [tex]\(\frac{4}{9} = \frac{8}{54} = \frac{16}{?} = \frac{32}{?} = \frac{36}{?}\)[/tex]
- Let's simplify [tex]\(\frac{8}{54}\)[/tex]: Divide both the numerator and the denominator by 2:
[tex]\(\frac{8}{54} = \frac{4}{27}\)[/tex] (not the same as [tex]\(\frac{4}{9}\)[/tex]).

This should reveal that the correct match should use a common multiple approach for completing empty numerators/denominators:
- [tex]\(\frac{16}{36}\)[/tex], [tex]\(\frac{32}{72}\)[/tex], etc., are equivalent through direct multiplication of original [tex]\(\frac{4}{9}\)[/tex].

### 29. [tex]\(\frac{1}{5} = \frac{?}{15} = \frac{5}{35} = \frac{?}{45} = \frac{11}{?}\)[/tex]
To find equivalents:
- [tex]\(\frac{1}{5}\)[/tex] scaled by 3 gives [tex]\(\frac{3}{15}\)[/tex].
- [tex]\(\frac{1}{5}\)[/tex] scaled by 9 gives [tex]\(\frac{9}{45}\)[/tex].
- [tex]\(\frac{1}{5}\)[/tex] scaled by 11 gives [tex]\(\frac{11}{55}\)[/tex].

### 30. [tex]\(\frac{3}{11} = \frac{?}{22} = \frac{?}{33} = \frac{12}{?} = \frac{?}{55} = 21\)[/tex]
Let's find the missing values:
- For [tex]\(\frac{?}{22}\)[/tex], multiply [tex]\(\frac{3}{11}\)[/tex] by 2 to get [tex]\(\frac{6}{22}\)[/tex].
- For [tex]\(\frac{?}{33}\)[/tex], multiply [tex]\(\frac{3}{11}\)[/tex] by 3 to get [tex]\(\frac{9}{33}\)[/tex].
- To match [tex]\(\frac{12}{?}\)[/tex], multiply [tex]\(\frac{3}{11}\)[/tex] by 4 to get [tex]\(\frac{12}{44}\)[/tex].
- [tex]\(\frac{?}{55}\)[/tex] is found by multiplying by 5: [tex]\(\frac{15}{55}\)[/tex], making it align with our equivalencies.

Keep practicing the concept of equivalent fractions by multiplying or dividing the numerator and denominator by the same number to find or verify equivalency!