College

Write the equivalent fraction.

1. [tex]\(\frac{2}{3}=\frac{\square}{12}\)[/tex]

2. [tex]\(\frac{3}{8}=\frac{16}{16}\)[/tex]

3. [tex]\(\frac{4}{5}=\frac{2}{20}\)[/tex]

4. [tex]\(\frac{5}{6}=\frac{3}{60}\)[/tex]

---

Write each fraction in simplest terms.

5. [tex]\(\frac{5}{10}=\)[/tex]

6. [tex]\(\frac{8}{12}=\frac{2}{3}\)[/tex]

7. [tex]\(\frac{4}{20}=\)[/tex]

8. [tex]\(\frac{9}{27}=\)[/tex]

9. [tex]\(\frac{24}{30}=\frac{4}{5}\)[/tex]

10. [tex]\(\frac{16}{18}=\frac{8}{9}\)[/tex]

11. [tex]\(\frac{35}{49}=\)[/tex]

12. [tex]\(\frac{32}{40}=\frac{4}{5}\)[/tex]

---

Write [tex]\(\ \textless \ \)[/tex] or [tex]\(\ \textgreater \ \)[/tex] in each circle.

13. [tex]\(\frac{5}{8}\)[/tex] [tex]\(\square\)[/tex] [tex]\(\frac{2}{3}\)[/tex]

14. [tex]\(\frac{5}{12}\)[/tex] [tex]\(\square\)[/tex] [tex]\(\frac{9}{16}\)[/tex]

15. [tex]\(\frac{1}{2}\)[/tex] [tex]\(\square\)[/tex] [tex]\(\frac{4}{7}\)[/tex]

16. [tex]\(\frac{3}{8}\)[/tex] [tex]\(\square\)[/tex] [tex]\(\frac{1}{3}\)[/tex]

---

Write each mixed number as an improper fraction.

17. [tex]\(6 \frac{2}{3}=\)[/tex]

18. [tex]\(5 \frac{3}{8}=\)[/tex]

19. [tex]\(5 \frac{4}{7}=\)[/tex]

20. [tex]\(3 \frac{4}{9}=\)[/tex]

21. [tex]\(4 \frac{5}{11}=\)[/tex]

22. [tex]\(7 \frac{2}{5}=\)[/tex]

23. [tex]\(9 \frac{5}{8}=\)[/tex]

---

Write each quotient as a mixed number. Simplify if necessary.

24. [tex]\(5 \div 27\)[/tex]

25. [tex]\(8 \div 188\)[/tex]

26. [tex]\(35 \div 308\)[/tex]

27. [tex]\(41 \div 856\)[/tex]

28. [tex]\(14 \div 295\)[/tex]

29. [tex]\(15 \div 607\)[/tex]

30. [tex]\(12 \div 461\)[/tex]

31. [tex]\(16 \div 740\)[/tex]

---

Rename each improper fraction as a whole or mixed number.

32. [tex]\(\frac{9}{6}=\)[/tex]

33. [tex]\(\frac{15}{7}=\)[/tex]

34. [tex]\(\frac{36}{4}=\)[/tex]

35. [tex]\(\frac{56}{7}=\)[/tex]

36. [tex]\(\frac{95}{7}=\)[/tex]

37. [tex]\(\frac{49}{8}=\)[/tex]

38. [tex]\(\frac{63}{12}=\)[/tex]

39. [tex]\(\frac{54}{7}=\)[/tex]

---

Chapter 7 - Test

Answer :

Certainly! Let's go through each part of the question step-by-step.

1. Equivalent Fraction:
- We need to find the missing numerator for [tex]\(\frac{2}{3} = \frac{\square}{12}\)[/tex].
- To find the equivalent fraction, we set up the proportion:
[tex]\[
\frac{2}{3} = \frac{x}{12}
\][/tex]
- To find [tex]\(x\)[/tex], we cross-multiply:
[tex]\[
2 \times 12 = 3 \times x \quad \Rightarrow \quad 24 = 3x \quad \Rightarrow \quad x = \frac{24}{3} = 8
\][/tex]
- So, [tex]\(\frac{2}{3} = \frac{8}{12}\)[/tex].

2. Simplifying Fractions:
- For [tex]\(\frac{5}{10}\)[/tex], we find the greatest common divisor (GCD) of 5 and 10, which is 5. We divide both the numerator and denominator by 5:
[tex]\[
\frac{5}{10} = \frac{5 \div 5}{10 \div 5} = \frac{1}{2}
\][/tex]

3. Comparing Fractions:
- We are asked to compare [tex]\(\frac{5}{8}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex].
- To compare, convert both fractions to have a common denominator or convert each to decimals:
[tex]\[
\frac{5}{8} = 0.625 \quad \text{and} \quad \frac{2}{3} \approx 0.6667
\][/tex]
- Since [tex]\(0.625 < 0.6667\)[/tex], it follows that [tex]\(\frac{5}{8} < \frac{2}{3}\)[/tex].

4. Converting Mixed Numbers to Improper Fractions:
- For [tex]\(6 \frac{2}{3}\)[/tex], follow these steps:
- Multiply the whole number by the denominator: [tex]\(6 \times 3 = 18\)[/tex].
- Add the numerator: [tex]\(18 + 2 = 20\)[/tex].
- The improper fraction is [tex]\(\frac{20}{3}\)[/tex].

5. Dividing and Writing Quotient as a Mixed Number:
- For [tex]\(16 \div 740\)[/tex], the quotient is 0 because [tex]\(16\)[/tex] is less than [tex]\(740\)[/tex].
- The remainder is [tex]\(16\)[/tex].
- As a mixed number, it remains [tex]\(0\)[/tex] with a fraction of [tex]\(\frac{16}{740}\)[/tex] (a fraction of the remainder over the original divisor).

6. Renaming Improper Fractions:
- For [tex]\(\frac{15}{7}\)[/tex]:
- Divide 15 by 7, which gives 2 with a remainder of 1.
- So, the fraction is written as [tex]\(2 \frac{1}{7}\)[/tex].

Each step corresponds to a different task in the original question, and these steps provide a detailed breakdown of each problem's solution!