College

Which system is equivalent to

[tex]\[

\left\{

\begin{array}{l}

5x^2 + 6y^2 = 50 \\

7x^2 + 2y^2 = 10

\end{array}

\right.

\][/tex]?

A.
[tex]\[

\left\{

\begin{aligned}

5x^2 + 6y^2 & = 50 \\

-21x^2 - 6y^2 & = 10

\end{aligned}

\right.

\][/tex]

B.
[tex]\[

\left\{

\begin{aligned}

5x^2 + 6y^2 & = 50 \\

-21x^2 - 6y^2 & = 30

\end{aligned}

\right.

\][/tex]

C.
[tex]\[

\left\{

\begin{array}{r}

35x^2 + 42y^2 = 250 \\

-35x^2 - 10y^2 = -50

\end{array}

\right.

\][/tex]

D.
[tex]\[

\left\{

\begin{aligned}

35x^2 + 42y^2 & = 350 \\

-35x^2 - 10y^2 & = -50

\end{aligned}

\right.

\][/tex]

Answer :

We start with the original system of equations:

[tex]$$
\begin{cases}
5x^2 + 6y^2 = 50, \\
7x^2 + 2y^2 = 10.
\end{cases}
$$[/tex]

Step 1. Multiply the first equation by 7.

Multiplying

[tex]$$5x^2 + 6y^2 = 50$$[/tex]

by 7, we obtain

[tex]$$
7(5x^2 + 6y^2) = 7 \cdot 50,
$$[/tex]

which simplifies to

[tex]$$
35x^2 + 42y^2 = 350.
$$[/tex]

Step 2. Multiply the second equation by 5 and then by -1.

First, multiplying

[tex]$$7x^2 + 2y^2 = 10$$[/tex]

by 5 gives:

[tex]$$
5(7x^2 + 2y^2) = 5 \cdot 10,
$$[/tex]

which results in

[tex]$$
35x^2 + 10y^2 = 50.
$$[/tex]

Then, multiplying the entire equation by [tex]$-1$[/tex], we get:

[tex]$$
-35x^2 - 10y^2 = -50.
$$[/tex]

Step 3. Write the new system.

The equivalent system is now:

[tex]$$
\begin{cases}
35x^2 + 42y^2 = 350, \\
-35x^2 - 10y^2 = -50.
\end{cases}
$$[/tex]

This system corresponds to option 4.