Answer :
To determine which ratio is equivalent to [tex]$4:5$[/tex], we first note that
[tex]$$
4:5 = \frac{4}{5} = 0.8.
$$[/tex]
Now we compare this to each given option:
1. For the ratio
[tex]$$
\frac{10}{15} \approx 0.667,
$$[/tex]
we see that [tex]$0.667 \neq 0.8$[/tex].
2. For the ratio
[tex]$$
\frac{4}{10} = 0.4,
$$[/tex]
we have [tex]$0.4 \neq 0.8$[/tex].
3. For the ratio
[tex]$$
\frac{18}{20} = 0.9,
$$[/tex]
we have [tex]$0.9 \neq 0.8$[/tex].
4. For the ratio
[tex]$$
\frac{15}{8} \approx 1.875,
$$[/tex]
we have [tex]$1.875 \neq 0.8$[/tex].
None of the provided ratios have a value equal to [tex]$0.8$[/tex]. Therefore,
[tex]$$
\textbf{None of the options is equivalent to } 4:5.
$$[/tex]
[tex]$$
4:5 = \frac{4}{5} = 0.8.
$$[/tex]
Now we compare this to each given option:
1. For the ratio
[tex]$$
\frac{10}{15} \approx 0.667,
$$[/tex]
we see that [tex]$0.667 \neq 0.8$[/tex].
2. For the ratio
[tex]$$
\frac{4}{10} = 0.4,
$$[/tex]
we have [tex]$0.4 \neq 0.8$[/tex].
3. For the ratio
[tex]$$
\frac{18}{20} = 0.9,
$$[/tex]
we have [tex]$0.9 \neq 0.8$[/tex].
4. For the ratio
[tex]$$
\frac{15}{8} \approx 1.875,
$$[/tex]
we have [tex]$1.875 \neq 0.8$[/tex].
None of the provided ratios have a value equal to [tex]$0.8$[/tex]. Therefore,
[tex]$$
\textbf{None of the options is equivalent to } 4:5.
$$[/tex]