Answer :
We want to find the product of the two polynomials
[tex]$$3x^2 - 7$$[/tex]
and
[tex]$$5x^3 - 8x - 6.$$[/tex]
Step 1: Multiply each term in the first polynomial by each term in the second polynomial.
- Multiply [tex]\(3x^2\)[/tex] by each term in [tex]\(5x^3 - 8x - 6\)[/tex]:
[tex]\[
\begin{aligned}
3x^2 \cdot 5x^3 &= 15x^5, \\
3x^2 \cdot (-8x) &= -24x^3, \\
3x^2 \cdot (-6) &= -18x^2.
\end{aligned}
\][/tex]
- Multiply [tex]\(-7\)[/tex] by each term in [tex]\(5x^3 - 8x - 6\)[/tex]:
[tex]\[
\begin{aligned}
-7 \cdot 5x^3 &= -35x^3, \\
-7 \cdot (-8x) &= 56x, \\
-7 \cdot (-6) &= 42.
\end{aligned}
\][/tex]
Step 2: Combine like terms.
List all the products we obtained:
- [tex]\(15x^5\)[/tex],
- [tex]\(-24x^3\)[/tex],
- [tex]\(-18x^2\)[/tex],
- [tex]\(-35x^3\)[/tex],
- [tex]\(56x\)[/tex],
- [tex]\(42\)[/tex].
Now, combine the like terms (in this case, the [tex]\(x^3\)[/tex] terms):
[tex]\[
-24x^3 - 35x^3 = -59x^3.
\][/tex]
So the entire expanded product is:
[tex]\[
15x^5 - 59x^3 - 18x^2 + 56x + 42.
\][/tex]
Step 3: Match with the provided options.
The expanded result
[tex]$$15x^5 - 59x^3 - 18x^2 + 56x + 42$$[/tex]
corresponds to option C.
Therefore, the final answer is option C.
[tex]$$3x^2 - 7$$[/tex]
and
[tex]$$5x^3 - 8x - 6.$$[/tex]
Step 1: Multiply each term in the first polynomial by each term in the second polynomial.
- Multiply [tex]\(3x^2\)[/tex] by each term in [tex]\(5x^3 - 8x - 6\)[/tex]:
[tex]\[
\begin{aligned}
3x^2 \cdot 5x^3 &= 15x^5, \\
3x^2 \cdot (-8x) &= -24x^3, \\
3x^2 \cdot (-6) &= -18x^2.
\end{aligned}
\][/tex]
- Multiply [tex]\(-7\)[/tex] by each term in [tex]\(5x^3 - 8x - 6\)[/tex]:
[tex]\[
\begin{aligned}
-7 \cdot 5x^3 &= -35x^3, \\
-7 \cdot (-8x) &= 56x, \\
-7 \cdot (-6) &= 42.
\end{aligned}
\][/tex]
Step 2: Combine like terms.
List all the products we obtained:
- [tex]\(15x^5\)[/tex],
- [tex]\(-24x^3\)[/tex],
- [tex]\(-18x^2\)[/tex],
- [tex]\(-35x^3\)[/tex],
- [tex]\(56x\)[/tex],
- [tex]\(42\)[/tex].
Now, combine the like terms (in this case, the [tex]\(x^3\)[/tex] terms):
[tex]\[
-24x^3 - 35x^3 = -59x^3.
\][/tex]
So the entire expanded product is:
[tex]\[
15x^5 - 59x^3 - 18x^2 + 56x + 42.
\][/tex]
Step 3: Match with the provided options.
The expanded result
[tex]$$15x^5 - 59x^3 - 18x^2 + 56x + 42$$[/tex]
corresponds to option C.
Therefore, the final answer is option C.