Answer :
To find which of the given fractions are equivalent to [tex]\frac{6}{15}[/tex], we need to simplify each fraction to see if they reduce to the same fraction.
Simplifying [tex]\frac{6}{15}[/tex]:
- The greatest common divisor (GCD) of 6 and 15 is 3.
- Divide both the numerator and the denominator by 3:
[tex]\frac{6 \div 3}{15 \div 3} = \frac{2}{5}[/tex] - So, [tex]\frac{6}{15} = \frac{2}{5}[/tex].
Checking [tex]\frac{10}{16}[/tex]:
- The GCD of 10 and 16 is 2.
- Divide both numerator and denominator by 2:
[tex]\frac{10 \div 2}{16 \div 2} = \frac{5}{8}[/tex] - [tex]\frac{10}{16} \neq \frac{2}{5}[/tex].
Checking [tex]\frac{12}{21}[/tex]:
- The GCD of 12 and 21 is 3.
- Divide both numerator and denominator by 3:
[tex]\frac{12 \div 3}{21 \div 3} = \frac{4}{7}[/tex] - [tex]\frac{12}{21} \neq \frac{2}{5}[/tex].
Checking [tex]\frac{32}{40}[/tex]:
- The GCD of 32 and 40 is 8.
- Divide both numerator and denominator by 8:
[tex]\frac{32 \div 8}{40 \div 8} = \frac{4}{5}[/tex] - [tex]\frac{32}{40} \neq \frac{2}{5}[/tex].
Checking [tex]\frac{8}{16}[/tex]:
- The GCD of 8 and 16 is 8.
- Divide both numerator and denominator by 8:
[tex]\frac{8 \div 8}{16 \div 8} = \frac{1}{2}[/tex] - [tex]\frac{8}{16} \neq \frac{2}{5}[/tex].
None of the given fractions are equivalent to [tex]\frac{6}{15}[/tex] after simplification.