High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which of the following shows the polynomial below written in descending order?

[tex]\[ 3x^3 + 9x^7 - x + 4x^{12} \][/tex]

A. [tex]\[ 4x^{12} + 9x^7 + 3x^3 - x \][/tex]

B. [tex]\[ 3x^3 + 4x^{12} + 9x^7 - x \][/tex]

C. [tex]\[ 9x^7 + 4x^{12} + 3x^3 - x \][/tex]

D. [tex]\[ 4x^{12} + 3x^3 - x + 9x^7 \][/tex]

Answer :

To rewrite the polynomial [tex]\(3x^3 + 9x^7 - x + 4x^{12}\)[/tex] in descending order, you should arrange the terms from the highest degree to the lowest degree. Here's how to do it step-by-step:

1. Identify the Exponents: Look at the exponents of each term:
- [tex]\(3x^3\)[/tex] has an exponent of 3.
- [tex]\(9x^7\)[/tex] has an exponent of 7.
- [tex]\(-x\)[/tex] is the same as [tex]\(-1x^1\)[/tex], so it has an exponent of 1.
- [tex]\(4x^{12}\)[/tex] has an exponent of 12.

2. Order the Exponents: Arrange these exponents in descending order: 12, 7, 3, 1.

3. Reorder the Terms: Write the terms of the polynomial according to the descending order of exponents:
- The term with the highest exponent is [tex]\(4x^{12}\)[/tex].
- Next is [tex]\(9x^7\)[/tex].
- Then comes [tex]\(3x^3\)[/tex].
- Finally, the term [tex]\( -x \)[/tex] (or [tex]\(-1x^1\)[/tex]).

4. Final Polynomial: Combine the reordered terms to get the polynomial in descending order:
[tex]\[
4x^{12} + 9x^7 + 3x^3 - x
\][/tex]

Now, compare this reordered polynomial with the given options:

- A. [tex]\(4x^{12} + 9x^7 + 3x^3 - x\)[/tex]
- B. [tex]\(3x^3 + 4x^{12} + 9x^7 - x\)[/tex]
- C. [tex]\(9x^7 + 4x^{12} + 3x^3 - x\)[/tex]
- D. [tex]\(4x^{12} + 3x^3 - x + 9x^7\)[/tex]

The correct choice is A. [tex]\(4x^{12} + 9x^7 + 3x^3 - x\)[/tex] which matches the polynomial arranged in descending order.