High School

Which of the following shows the polynomial below written in descending order?

[tex]2x^2 - 4x + x^6 + 8 + 3x^{10}[/tex]

A. [tex]x^6 + 2x^2 + 8 + 3x^{10} - 4x[/tex]
B. [tex]3x^{10} + 2x^2 - 4x + 8 + x^6[/tex]
C. [tex]3x^{10} + x^6 + 2x^2 - 4x + 8[/tex]
D. [tex]8 + 3x^{10} + x^6 + 2x^2 - 4x[/tex]

Answer :

To write a polynomial in descending order, you need to arrange the terms based on the power of [tex]\( x \)[/tex] from highest to lowest. Let's take a look at the given polynomial:

[tex]\[ 2x^2 - 4x + x^6 + 8 + 3x^{10} \][/tex]

Here are the steps to rearrange this polynomial in descending order:

1. Identify the terms:
- [tex]\( 3x^{10} \)[/tex]
- [tex]\( x^6 \)[/tex]
- [tex]\( 2x^2 \)[/tex]
- [tex]\( -4x \)[/tex]
- [tex]\( 8 \)[/tex]

2. Order by the exponents of [tex]\( x \)[/tex]:

- The term with the highest exponent is [tex]\( 3x^{10} \)[/tex].
- The next highest is [tex]\( x^6 \)[/tex].
- Followed by [tex]\( 2x^2 \)[/tex].
- Then, [tex]\( -4x \)[/tex].
- Finally, the constant term [tex]\( 8 \)[/tex].

3. Write the polynomial with terms ordered by descending exponents:

[tex]\[ 3x^{10} + x^6 + 2x^2 - 4x + 8 \][/tex]

By following these steps, you should see that the polynomial in descending order is correctly arranged as:

[tex]\[ 3x^{10} + x^6 + 2x^2 - 4x + 8 \][/tex]

Based on the options provided, the correct answer is:

C. [tex]\( 3x^{10} + x^6 + 2x^2 - 4x + 8 \)[/tex]