College

Which of the following is the product of [tex]$(7x + 2)$[/tex] and [tex]$(5x - 11)$[/tex]?

A. [tex]$12x^2 - 10x - 77x - 22$[/tex]
B. [tex]$35x^2 - 67x - 22$[/tex]
C. [tex]$12x^2 - 67x - 22$[/tex]
D. [tex]$35x^2 + 67x + 22$[/tex]

Answer :

To find the product of the expressions [tex]\( (7x + 2) \)[/tex] and [tex]\( (5x - 11) \)[/tex], we'll follow these steps:

1. Distribute each term in the first expression to each term in the second expression:
- Multiply [tex]\( 7x \)[/tex] with each term in [tex]\( (5x - 11) \)[/tex].
- [tex]\( 7x \times 5x = 35x^2 \)[/tex]
- [tex]\( 7x \times (-11) = -77x \)[/tex]
- Multiply [tex]\( 2 \)[/tex] with each term in [tex]\( (5x - 11) \)[/tex].
- [tex]\( 2 \times 5x = 10x \)[/tex]
- [tex]\( 2 \times (-11) = -22 \)[/tex]

2. Combine all the products from the distribution:
- The resulting expression after multiplication is:
[tex]\[
35x^2 - 77x + 10x - 22
\][/tex]

3. Simplify by combining like terms:
- Combine the [tex]\( x \)[/tex] terms: [tex]\( -77x + 10x = -67x \)[/tex]

So, the simplified expression for the product is:
[tex]\[
35x^2 - 67x - 22
\][/tex]

From the given options, the correct answer is:

B. [tex]\( 35x^2 - 67x - 22 \)[/tex]