High School

Which of the following is equivalent to the given expression [tex]$6(5r - 11) - (5 - r)$[/tex]?

Choose 1 answer:

A. [tex]$30r - 71$[/tex]

B. [tex]$31r - 71$[/tex]

C. [tex]$29r - 71$[/tex]

D. [tex]$31r - 61$[/tex]

Answer :

To simplify the expression

$$6(5r - 11) - (5 - r),$$

we can follow these steps:

1. **Distribute in the first term:**

Multiply 6 with each term inside the parentheses:

$$6(5r) = 30r,$$
$$6(-11) = -66.$$

So,

$$6(5r - 11) = 30r - 66.$$

2. **Distribute the negative sign in the second term:**

The expression

$$-(5 - r)$$

becomes

$$-5 + r.$$

3. **Combine like terms:**

Write the expression with all terms:

$$30r - 66 - 5 + r.$$

Group the terms involving $r$ and the constant terms:

- Combine the $r$ terms:

$$30r + r = 31r.$$

- Combine the constants:

$$-66 - 5 = -71.$$

The simplified expression is:

$$31r - 71.$$

Thus, the expression $6(5r-11)-(5-r)$ simplifies to

$$\boxed{31r - 71}.$$

Among the provided choices, this corresponds to option (B).
Given expression:
6(5r - 11) - (5 - 7)

Step 1: Distribute the 6

6 \cdot 5r = 30r \\
6 \cdot -11 = -66
So:
6(5r - 11) = 30r - 66

Step 2: Simplify the second part

(5 - 7) = -2

Now combine:
30r - 66 - (-2) = 30r - 66 + 2 = 30r - 64



Final Answer:

30r - 64