Answer :
To solve the given expression and find its equivalent, let's break it down step-by-step.
We have the expression:
[tex]\[
\frac{1}{2} x + 4 \frac{1}{2} + \frac{1}{2} x - \frac{1}{2}
\][/tex]
1. Combine the like terms involving [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 1 x
\][/tex]
2. Combine the constant terms:
[tex]\[
4 \frac{1}{2} - \frac{1}{2} = 4
\][/tex]
3. Put it all together:
The simplified expression is:
[tex]\[
x + 4
\][/tex]
So, the equivalent expression is [tex]\( x + 4 \)[/tex].
From the given options, the correct choice is:
(C) [tex]\( x + 4 \)[/tex]
We have the expression:
[tex]\[
\frac{1}{2} x + 4 \frac{1}{2} + \frac{1}{2} x - \frac{1}{2}
\][/tex]
1. Combine the like terms involving [tex]\( x \)[/tex]:
[tex]\[
\frac{1}{2} x + \frac{1}{2} x = 1 x
\][/tex]
2. Combine the constant terms:
[tex]\[
4 \frac{1}{2} - \frac{1}{2} = 4
\][/tex]
3. Put it all together:
The simplified expression is:
[tex]\[
x + 4
\][/tex]
So, the equivalent expression is [tex]\( x + 4 \)[/tex].
From the given options, the correct choice is:
(C) [tex]\( x + 4 \)[/tex]