College

Which expressions are equivalent to [tex]-9\left(\frac{2}{3} x+1\right)[/tex]? Check all that apply.



A. [tex]-9\left(\frac{2}{3} x\right)+9(1)[/tex]

B. [tex]-9\left(\frac{2}{3} x\right)-9(1)[/tex]

C. [tex]-9\left(\frac{2}{3} x\right)+1[/tex]

D. [tex]-6 x+1[/tex]

E. [tex]-6 x+9[/tex]

F. [tex]-6 x-9[/tex]

Answer :

We start with the expression

$$-9\left(\frac{2}{3}x + 1\right).$$

Step 1. Distribute the $-9$ to both terms inside the parentheses:

$$-9\left(\frac{2}{3}x\right) = -9 \cdot \frac{2}{3}x = -\frac{18}{3}x = -6x,$$

and

$$-9(1) = -9.$$

Step 2. Write the simplified expression:

$$-9\left(\frac{2}{3}x + 1\right) = -6x - 9.$$

Step 3. Compare the simplified expression with each given option:

1) $-9\left(\frac{2}{3}x\right) + 9(1)$ becomes $-6x + 9$, which does not match.

2) $-9\left(\frac{2}{3}x\right) - 9(1)$ becomes $-6x - 9$, which matches.

3) $-9\left(\frac{2}{3}x\right) + 1$ becomes $-6x + 1$, which does not match.

4) $-6x + 1$ does not match since we need $-6x - 9$.

5) $-6x + 9$ does not match.

6) $-6x - 9$ exactly matches the simplified expression.

Thus, the expressions that are equivalent to $-9\left(\frac{2}{3}x + 1\right)$ are in options 2 and 6.