Answer :
Let's find which expressions are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] by simplifying the expression. We will distribute the [tex]\(-9\)[/tex] to both terms inside the parentheses:
1. Start with the original expression:
[tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex].
2. Distribute the [tex]\(-9\)[/tex] to each term inside the parentheses:
- First term: [tex]\(-9 \times \frac{2}{3}x = -6x\)[/tex]
- Second term: [tex]\(-9 \times 1 = -9\)[/tex]
3. Putting it all together, the expression simplifies to:
[tex]\(-6x - 9\)[/tex].
Now, let's check the given options to see which ones are equivalent to [tex]\(-6x - 9\)[/tex]:
1. [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x + 9\)[/tex]
- Not equivalent.
2. [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x - 9\)[/tex]
- Equivalent.
3. [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
- Simplifies to: [tex]\(-6x + 1\)[/tex]
- Not equivalent.
4. [tex]\(-6x + 1\)[/tex]
- Already simplified; not equivalent to [tex]\(-6x - 9\)[/tex].
5. [tex]\(-6x + 9\)[/tex]
- Already simplified; not equivalent to [tex]\(-6x - 9\)[/tex].
6. [tex]\(-6x - 9\)[/tex]
- Already simplified; equivalent.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- Option 2: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- Option 6: [tex]\(-6x - 9\)[/tex]
1. Start with the original expression:
[tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex].
2. Distribute the [tex]\(-9\)[/tex] to each term inside the parentheses:
- First term: [tex]\(-9 \times \frac{2}{3}x = -6x\)[/tex]
- Second term: [tex]\(-9 \times 1 = -9\)[/tex]
3. Putting it all together, the expression simplifies to:
[tex]\(-6x - 9\)[/tex].
Now, let's check the given options to see which ones are equivalent to [tex]\(-6x - 9\)[/tex]:
1. [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x + 9\)[/tex]
- Not equivalent.
2. [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x - 9\)[/tex]
- Equivalent.
3. [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
- Simplifies to: [tex]\(-6x + 1\)[/tex]
- Not equivalent.
4. [tex]\(-6x + 1\)[/tex]
- Already simplified; not equivalent to [tex]\(-6x - 9\)[/tex].
5. [tex]\(-6x + 9\)[/tex]
- Already simplified; not equivalent to [tex]\(-6x - 9\)[/tex].
6. [tex]\(-6x - 9\)[/tex]
- Already simplified; equivalent.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- Option 2: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- Option 6: [tex]\(-6x - 9\)[/tex]