Answer :
To find which expressions are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex], we'll start by simplifying the given expression by distributing the [tex]\(-9\)[/tex] across the terms inside the parentheses.
1. Original expression: [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex].
2. Distribute -9 to each term inside the parentheses:
- Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3} x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3} x = -6x
\][/tex]
- Multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
3. Combine the results:
[tex]\[
-6x - 9
\][/tex]
Now, we'll check the provided expressions to see which ones are equivalent to [tex]\(-6x - 9\)[/tex].
- First option: [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x + 9\)[/tex]
- Second option: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x - 9\)[/tex]
- This matches our simplified expression.
- Third option: [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
- Simplifies to: [tex]\(-6x + 1\)[/tex]
- Fourth option: [tex]\(-6x + 1\)[/tex]
- This is already in simplified form: [tex]\(-6x + 1\)[/tex]
- Fifth option: [tex]\(-6x + 9\)[/tex]
- This is already in simplified form: [tex]\(-6x + 9\)[/tex]
- Sixth option: [tex]\(-6x - 9\)[/tex]
- This is already in simplified form and matches our expression: [tex]\(-6x - 9\)[/tex]
Based on our analysis, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
1. Original expression: [tex]\(-9\left(\frac{2}{3} x + 1\right)\)[/tex].
2. Distribute -9 to each term inside the parentheses:
- Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3} x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3} x = -6x
\][/tex]
- Multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
3. Combine the results:
[tex]\[
-6x - 9
\][/tex]
Now, we'll check the provided expressions to see which ones are equivalent to [tex]\(-6x - 9\)[/tex].
- First option: [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x + 9\)[/tex]
- Second option: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- Simplifies to: [tex]\(-6x - 9\)[/tex]
- This matches our simplified expression.
- Third option: [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
- Simplifies to: [tex]\(-6x + 1\)[/tex]
- Fourth option: [tex]\(-6x + 1\)[/tex]
- This is already in simplified form: [tex]\(-6x + 1\)[/tex]
- Fifth option: [tex]\(-6x + 9\)[/tex]
- This is already in simplified form: [tex]\(-6x + 9\)[/tex]
- Sixth option: [tex]\(-6x - 9\)[/tex]
- This is already in simplified form and matches our expression: [tex]\(-6x - 9\)[/tex]
Based on our analysis, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]