Answer :
To solve this problem, we want to determine which expressions are equivalent to the expression [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex]. Let's break it down step-by-step:
1. Distribute the -9 in the expression:
We have [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex]. We need to distribute the [tex]\(-9\)[/tex] to each term inside the parentheses:
- First, distribute [tex]\(-9\)[/tex] to [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3}x = -6x
\][/tex]
- Next, distribute [tex]\(-9\)[/tex] to [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
So, the expression simplifies to [tex]\(-6x - 9\)[/tex].
2. Identify equivalent expressions:
We need to check which of the given expressions are equivalent to [tex]\(-6x - 9\)[/tex]:
- [tex]\(-9\left(\frac{2}{3} x\right)+9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex].
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex].
- [tex]\(-9\left(\frac{2}{3} x\right)+1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex].
- [tex]\(-6x + 1\)[/tex]
- [tex]\(-6x + 9\)[/tex]
- [tex]\(-6x - 9\)[/tex]
3. Conclude which expressions are equivalent:
Comparing each of the expressions above with [tex]\(-6x - 9\)[/tex], we find that:
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] is equivalent.
- [tex]\(-6x - 9\)[/tex] is also equivalent.
Therefore, the expressions [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] and [tex]\(-6x - 9\)[/tex] are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex].
1. Distribute the -9 in the expression:
We have [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex]. We need to distribute the [tex]\(-9\)[/tex] to each term inside the parentheses:
- First, distribute [tex]\(-9\)[/tex] to [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3}x = -6x
\][/tex]
- Next, distribute [tex]\(-9\)[/tex] to [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
So, the expression simplifies to [tex]\(-6x - 9\)[/tex].
2. Identify equivalent expressions:
We need to check which of the given expressions are equivalent to [tex]\(-6x - 9\)[/tex]:
- [tex]\(-9\left(\frac{2}{3} x\right)+9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex].
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex].
- [tex]\(-9\left(\frac{2}{3} x\right)+1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex].
- [tex]\(-6x + 1\)[/tex]
- [tex]\(-6x + 9\)[/tex]
- [tex]\(-6x - 9\)[/tex]
3. Conclude which expressions are equivalent:
Comparing each of the expressions above with [tex]\(-6x - 9\)[/tex], we find that:
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] is equivalent.
- [tex]\(-6x - 9\)[/tex] is also equivalent.
Therefore, the expressions [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] and [tex]\(-6x - 9\)[/tex] are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex].