High School

Which expressions are equivalent to [tex]-6.3x - 4.2[/tex]?

A. [tex]-53x - 42 - x[/tex]

B. [tex]-34 - 53x - 0.8[/tex]

C. [tex]47 - 23x + 0.5 - 4x[/tex]

D. [tex]-52x - 42[/tex]

E. [tex]-42x - 6.3[/tex]

F. [tex]-37 - 53x + 0.5[/tex]

Answer :

Let's examine the expressions to determine which ones are equivalent to the expression [tex]\(-6.3x - 4.2\)[/tex].

1. Expression: [tex]\(-53x - 42 - x\)[/tex]
Simplify this expression:
[tex]\[
-53x - x - 42 = -54x - 42
\][/tex]
Clearly, [tex]\(-54x - 42\)[/tex] is not the same as [tex]\(-6.3x - 4.2\)[/tex].

2. Expression: [tex]\(-34 - 53x - 8\)[/tex]
Simplify this expression:
[tex]\[
-34 - 8 - 53x = -42 - 53x
\][/tex]
So, [tex]\(-42 - 53x\)[/tex] is not equal to [tex]\(-6.3x - 4.2\)[/tex].

3. Expression: [tex]\(47 - 23x + 5 - 4x\)[/tex]
Simplify this expression:
[tex]\[
47 + 5 - 23x - 4x = 52 - 27x
\][/tex]
Therefore, [tex]\(52 - 27x\)[/tex] is different from [tex]\(-6.3x - 4.2\)[/tex].

4. Expression: [tex]\(-52x - 42\)[/tex]
As it stands, this expression is clearly different from [tex]\(-6.3x - 4.2\)[/tex].

5. Expression: [tex]\(-42x - 6.3\)[/tex]
Simplified already, this expression is not equivalent to [tex]\(-6.3x - 4.2\)[/tex].

6. Expression: [tex]\(-37 - 53x + 0.5\)[/tex]
Simplify this expression:
[tex]\[
-37 + 0.5 - 53x = -36.5 - 53x
\][/tex]
As such, [tex]\(-36.5 - 53x\)[/tex] is not equivalent to [tex]\(-6.3x - 4.2\)[/tex].

In conclusion, none of the given expressions are equivalent to [tex]\(-6.3x - 4.2\)[/tex]. Each simplification process returns a result that differs from the target expression.