High School

Which expressions are equivalent to [tex]$25 x^4 - 64$[/tex]? Select three options.

A. [tex]$25 x^4 + 40 x - 40 x - 64$[/tex]
B. [tex][tex]$25 x^4 + 13 x - 13 x - 64$[/tex][/tex]
C. [tex]$\left(5 x^2 + 8\right)\left(5 x^2 - 8\right)$[/tex]
D. [tex]$\left(x^2 + 13\right)\left(x^2 - 13\right)$[/tex]
E. [tex][tex]$\left(5 x^2 - 8\right)^2$[/tex][/tex]

Answer :

Sure! Let's analyze each given expression to see which ones are equivalent to [tex]\( 25x^4 - 64 \)[/tex].

1. Expression: [tex]\( 25x^4 + 40x - 40x - 64 \)[/tex]

Let's simplify this expression step-by-step:
[tex]\[
25x^4 + 40x - 40x - 64
\][/tex]
Combine like terms (the [tex]\( +40x \)[/tex] and [tex]\( -40x \)[/tex] cancel each other out):
[tex]\[
25x^4 - 64
\][/tex]
This is exactly [tex]\( 25x^4 - 64 \)[/tex], so this is equivalent.

2. Expression: [tex]\( 25x^4 + 13x - 13x - 64 \)[/tex]

Simplify this expression step-by-step:
[tex]\[
25x^4 + 13x - 13x - 64
\][/tex]
Combine like terms (the [tex]\( +13x \)[/tex] and [tex]\( -13x \)[/tex] cancel each other out):
[tex]\[
25x^4 - 64
\][/tex]
This is exactly [tex]\( 25x^4 - 64 \)[/tex], so this is equivalent.

3. Expression: [tex]\( (5x^2 + 8)(5x^2 - 8) \)[/tex]

Expand this using the difference of squares formula [tex]\((a+b)(a-b) = a^2 - b^2\)[/tex]:
[tex]\[
(5x^2 + 8)(5x^2 - 8) = (5x^2)^2 - 8^2 = 25x^4 - 64
\][/tex]
This is exactly [tex]\( 25x^4 - 64 \)[/tex], so this is equivalent.

4. Expression: [tex]\( (x^2 + 13)(x^2 - 13) \)[/tex]

Expand this using the difference of squares formula [tex]\((a+b)(a-b) = a^2 - b^2\)[/tex]:
[tex]\[
(x^2 + 13)(x^2 - 13) = (x^2)^2 - 13^2 = x^4 - 169
\][/tex]
This is [tex]\( x^4 - 169 \)[/tex], which is not the same as [tex]\( 25x^4 - 64 \)[/tex], so this is not equivalent.

5. Expression: [tex]\( (5x^2 - 8)^2 \)[/tex]

Expand this using the square of a binomial formula [tex]\((a - b)^2 = a^2 - 2ab + b^2\)[/tex]:
[tex]\[
(5x^2 - 8)^2 = (5x^2)^2 - 2 \cdot 5x^2 \cdot 8 + 8^2 = 25x^4 - 80x^2 + 64
\][/tex]
This is [tex]\( 25x^4 - 80x^2 + 64 \)[/tex], which is not the same as [tex]\( 25x^4 - 64 \)[/tex], so this is not equivalent.

Given these detailed steps, the three expressions that are equivalent to [tex]\( 25x^4 - 64 \)[/tex] are:

- [tex]\( 25x^4 + 40x - 40x - 64 \)[/tex]
- [tex]\( 25x^4 + 13x - 13x - 64 \)[/tex]
- [tex]\( (5x^2 + 8)(5x^2 - 8) \)[/tex]

So the correct options are the first, second, and third expressions.