College

Which expression is equivalent to [tex]pq[/tex]?

A. [tex]p + q[/tex]

B. [tex]p - q[/tex]

C. [tex]\frac{p}{q}[/tex]

D. [tex]qp[/tex]

Answer :

To determine which expression is equivalent to [tex]\( pq \)[/tex], let's break down each option provided:

1. [tex]\( p + q \)[/tex]: This represents the sum of [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
2. [tex]\( p - q \)[/tex]: This represents the difference between [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
3. [tex]\( \frac{p}{q} \)[/tex]: This represents the division of [tex]\( p \)[/tex] by [tex]\( q \)[/tex].
4. [tex]\( qp \)[/tex]: This represents the product of [tex]\( q \)[/tex] and [tex]\( p \)[/tex].

Looking at these options, we need to determine which one is the same as [tex]\( pq \)[/tex]. Notice that:

- The product [tex]\( pq \)[/tex] is equivalent to the product [tex]\( qp \)[/tex] because multiplication is commutative (i.e., [tex]\( pq = qp \)[/tex]).

So, the expression that is equivalent to [tex]\( pq \)[/tex] is:

[tex]\[ qp \][/tex]

Among the given options, the correct one is:

[tex]\[ qp \][/tex]

Therefore, the correct answer is:

[tex]\[ qp \][/tex]