College

Which expression is equivalent to [tex]\left(3 x^2+7 x-11\right) 5[/tex]?

A) [tex]15 x^2+7 x-11[/tex]

B) [tex]15 x^2+35 x-55[/tex]

C) [tex]3 x^2+7 x-55[/tex]

D) [tex]3 x^2+35 x-55[/tex]

Answer :

To solve the problem, we need to distribute the 5 across each term inside the parentheses in the expression [tex]\((3x^2 + 7x - 11) \cdot 5\)[/tex]. Let's do this step-by-step:

1. Distribute the 5 to the first term:
The first term in the expression is [tex]\(3x^2\)[/tex]. Multiply this by 5:
[tex]\[
3x^2 \times 5 = 15x^2
\][/tex]

2. Distribute the 5 to the second term:
The second term is [tex]\(7x\)[/tex]. Multiply this by 5:
[tex]\[
7x \times 5 = 35x
\][/tex]

3. Distribute the 5 to the third term:
The third term is [tex]\(-11\)[/tex]. Multiply this by 5:
[tex]\[
-11 \times 5 = -55
\][/tex]

4. Combine these results to form the equivalent expression:
The terms we calculated are [tex]\(15x^2\)[/tex], [tex]\(35x\)[/tex], and [tex]\(-55\)[/tex]. Combining these, the expression becomes:
[tex]\[
15x^2 + 35x - 55
\][/tex]

This matches choice B from the given options. Therefore, the expression equivalent to [tex]\((3x^2 + 7x - 11) \cdot 5\)[/tex] is:

B) [tex]\(15x^2 + 35x - 55\)[/tex]