College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equivalent to [tex]\frac{1}{3}(2x + 12) - \frac{14}{15}x[/tex]?

Answer :

To solve the problem, we need to simplify the expression [tex]\(\frac{1}{3}(2x + 12) - \frac{14}{15}x\)[/tex]. Here's a step-by-step breakdown:

1. Distribute [tex]\(\frac{1}{3}\)[/tex] inside the parenthesis:
[tex]\[
\frac{1}{3}(2x + 12) = \frac{1}{3} \times 2x + \frac{1}{3} \times 12
\][/tex]
[tex]\[
= \frac{2}{3}x + 4
\][/tex]

2. Rewrite the original expression with the distributed terms:
[tex]\[
\frac{2}{3}x + 4 - \frac{14}{15}x
\][/tex]

3. Combine like terms ([tex]\(\frac{2}{3}x\)[/tex] and [tex]\(-\frac{14}{15}x\)[/tex]):
- First, we need to find a common denominator for the fractions [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{14}{15}\)[/tex]. The common denominator is 15.
- Convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with a denominator of 15:
[tex]\[
\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}
\][/tex]

- Now combine:
[tex]\[
\frac{10}{15}x - \frac{14}{15}x = \left(\frac{10}{15} - \frac{14}{15}\right)x = -\frac{4}{15}x
\][/tex]

4. Write the expression with combined terms:
[tex]\[
4 - \frac{4}{15}x
\][/tex]

Therefore, the expression equivalent to [tex]\(\frac{1}{3}(2x + 12) - \frac{14}{15}x\)[/tex] is [tex]\(4 - \frac{4}{15}x\)[/tex].

This matches the result: [tex]\(4.0 - 0.266666666666667x\)[/tex], which represents the simplified form with [tex]\(-0.266666666666667\)[/tex] being approximately equal to [tex]\(-\frac{4}{15}\)[/tex].