High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equivalent to

[tex]30\left(\frac{1}{2} x-2\right)+40\left(\frac{3}{4} y-4\right)[/tex]?

A. [tex]45xy - 220[/tex]

B. [tex]15x - 30y - 220[/tex]

C. [tex]15x + 30y - 220[/tex]

D. [tex]15x + 30y - 64[/tex]

Answer :

Sure! Let's solve the expression step by step.

The original expression is:
[tex]\[ 30\left(\frac{1}{2}x - 2\right) + 40\left(\frac{3}{4}y - 4\right) \][/tex]

1. Distribute the multiplication in the first part:

- First, distribute the 30 to each term inside the parentheses:

[tex]\[ 30 \times \frac{1}{2}x = 15x \][/tex]
[tex]\[ 30 \times -2 = -60 \][/tex]

So, the expression becomes [tex]\( 15x - 60 \)[/tex].

2. Distribute the multiplication in the second part:

- Now, distribute the 40 to each term inside the parentheses:

[tex]\[ 40 \times \frac{3}{4}y = 30y \][/tex]
[tex]\[ 40 \times -4 = -160 \][/tex]

So, the expression becomes [tex]\( 30y - 160 \)[/tex].

3. Combine the simplified expressions:

Now, add the two parts together:

[tex]\[ 15x - 60 + 30y - 160 \][/tex]

4. Simplify the expression:

Combine the like terms:

- The coefficients of [tex]\( x \)[/tex] give us: [tex]\( 15x \)[/tex]
- The coefficients of [tex]\( y \)[/tex] give us: [tex]\( 30y \)[/tex]
- The constant terms: [tex]\( -60 - 160 = -220 \)[/tex]

Thus, the final simplified expression is:
[tex]\[ 15x + 30y - 220 \][/tex]

This matches the option: 15x + 30y - 220.