College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equivalent to [tex]30\left(\frac{1}{2} x-2\right)+40\left(\frac{3}{4} y-4\right)[/tex]?

A. [tex]15x + 30y - 64[/tex]

B. [tex]15x - 30y - 220[/tex]

C. [tex]15x + 30y - 220[/tex]

D. [tex]45xy - 220[/tex]

Answer :

To solve the expression [tex]\(30\left(\frac{1}{2} x-2\right)+40\left(\frac{3}{4} y-4\right)\)[/tex], we need to apply the distributive property to both parts of the expression, simplify, and then combine the results.

1. Distribute the 30:
- Consider the term [tex]\(30\left(\frac{1}{2} x - 2\right)\)[/tex].
- Distribute the 30 to each part inside the parentheses:
- [tex]\(30 \times \frac{1}{2} x = 15x\)[/tex]
- [tex]\(30 \times -2 = -60\)[/tex]
- This yields: [tex]\(15x - 60\)[/tex].

2. Distribute the 40:
- Consider the term [tex]\(40\left(\frac{3}{4} y - 4\right)\)[/tex].
- Distribute the 40 to each part inside the parentheses:
- [tex]\(40 \times \frac{3}{4} y = 30y\)[/tex]
- [tex]\(40 \times -4 = -160\)[/tex]
- This yields: [tex]\(30y - 160\)[/tex].

3. Combine the results:
- Now, add the expressions from the two distributed results:
- [tex]\((15x - 60) + (30y - 160)\)[/tex]
- Combine like terms:
- [tex]\(15x\)[/tex] is already simplified.
- [tex]\(30y\)[/tex] is already simplified.
- Combine constants: [tex]\(-60 - 160 = -220\)[/tex].

So, the simplified expression is [tex]\(15x + 30y - 220\)[/tex].

Thus, the expression equivalent to the original is [tex]\(15x + 30y - 220\)[/tex].

The correct answer is: [tex]\(15x + 30y - 220\)[/tex].