High School

Which expression is equal to [tex]$(3x-5)(2x-7)$[/tex]?

A. [tex]$6x^2 - 31x + 35$[/tex]
B. [tex]$6x^2 + 31x - 35$[/tex]
C. [tex]$6x^2 - 31x - 12$[/tex]
D. [tex]$5x^2 - 21x + 12$[/tex]

Answer :

To solve the problem of determining which expression is equal to [tex]\((3x - 5)(2x - 7)\)[/tex], we need to expand the product using the distributive property. Here are the steps:

1. Apply the distributive property (also known as the FOIL method for binomials):

- First terms: Multiply the first terms from each binomial:
[tex]\[ 3x \times 2x = 6x^2 \][/tex]

- Outer terms: Multiply the outer terms:
[tex]\[ 3x \times -7 = -21x \][/tex]

- Inner terms: Multiply the inner terms:
[tex]\[ -5 \times 2x = -10x \][/tex]

- Last terms: Multiply the last terms:
[tex]\[ -5 \times -7 = 35 \][/tex]

2. Combine like terms:

- For the [tex]\(x\)[/tex] terms, combine [tex]\(-21x\)[/tex] and [tex]\(-10x\)[/tex]:
[tex]\[ -21x - 10x = -31x \][/tex]

3. Write the expanded expression:

By combining all the terms together, the expression becomes:
[tex]\[ 6x^2 - 31x + 35 \][/tex]

Therefore, the expression that is equal to [tex]\((3x - 5)(2x - 7)\)[/tex] is [tex]\(6x^2 - 31x + 35\)[/tex].