College

Which expression is equal to [tex]$(3x - 5)(2x - 7)$[/tex]?

A. [tex]$5x^2 - 21x + 12$[/tex]

B. [tex]$6x^2 - 31x - 12$[/tex]

C. [tex]$6x^2 + 31x - 35$[/tex]

D. [tex]$6x^2 - 31x + 35$[/tex]

Answer :

To find which expression is equal to [tex]\((3x - 5)(2x - 7)\)[/tex], we need to expand the expression using the distributive property (also known as the FOIL method for binomials). Here’s how it works step-by-step:

1. Multiply the First terms:
- [tex]\(3x \times 2x = 6x^2\)[/tex]

2. Multiply the Outer terms:
- [tex]\(3x \times -7 = -21x\)[/tex]

3. Multiply the Inner terms:
- [tex]\(-5 \times 2x = -10x\)[/tex]

4. Multiply the Last terms:
- [tex]\(-5 \times -7 = 35\)[/tex]

Now, combine all these results into a single expression:

[tex]\[6x^2 - 21x - 10x + 35\][/tex]

Next, combine the like terms ([tex]\(-21x\)[/tex] and [tex]\(-10x\)[/tex]):

[tex]\[6x^2 - 31x + 35\][/tex]

This is the expanded form of the expression [tex]\((3x - 5)(2x - 7)\)[/tex].

Now, let's identify which choice matches this expression:

- [tex]\(6x^2 - 31x + 35\)[/tex] is the form we have.

This matches the fourth choice: [tex]\(6x^2 - 31x + 35\)[/tex].