College

Which expression is equal to [tex]$(3x - 5)(2x - 7)$[/tex]?

A. [tex]6x^2 + 31x - 35[/tex]
B. [tex]6x^2 - 31x - 12[/tex]
C. [tex]5x^2 - 21x + 12[/tex]
D. [tex]6x^2 - 31x + 35[/tex]

Answer :

Sure, let's work through the problem step by step to find which expression is equal to [tex]\((3x - 5)(2x - 7)\)[/tex].

We'll use the distributive property, also known as the FOIL method (First, Outer, Inner, Last):

1. First:
[tex]\(3x \cdot 2x = 6x^2\)[/tex]

2. Outer:
[tex]\(3x \cdot (-7) = -21x\)[/tex]

3. Inner:
[tex]\(-5 \cdot 2x = -10x\)[/tex]

4. Last:
[tex]\(-5 \cdot (-7) = 35\)[/tex]

Now we'll add all these parts together:
[tex]\[
6x^2 - 21x - 10x + 35
\][/tex]

Next, combine the like terms ([tex]\(-21x\)[/tex] and [tex]\(-10x\)[/tex]):
[tex]\[
6x^2 - 31x + 35
\][/tex]

Therefore, the expression [tex]\((3x - 5)(2x - 7)\)[/tex] expands to [tex]\(6x^2 - 31x + 35\)[/tex].

Looking at the given options:
[tex]\[
1. 6x^2 + 31x - 35
\][/tex]
[tex]\[
2. 6x^2 - 31x - 12
\][/tex]
[tex]\[
3. 5x^2 - 21x + 12
\][/tex]
[tex]\[
4. 6x^2 - 31x + 35
\][/tex]

The correct expression is [tex]\(6x^2 - 31x + 35\)[/tex], which matches option 4.

So, the correct answer is:

[tex]\[
6x^2 - 31x + 35
\][/tex]