College

Which expression is equal to [tex]$(3x - 5)(2x - 7)$[/tex]?

A. [tex]6x^2 - 31x - 12[/tex]
B. [tex]6x^2 + 31x - 35[/tex]
C. [tex]5x^2 - 21x + 12[/tex]
D. [tex]6x^2 - 31x + 35[/tex]

Answer :

To determine which expression is equal to [tex]\((3x - 5)(2x - 7)\)[/tex], let's follow these steps:

1. Distribute each term in the first binomial by each term in the second binomial:

[tex]\[(3x - 5)(2x - 7)\][/tex]

First, distribute [tex]\(3x\)[/tex] to both [tex]\(2x\)[/tex] and [tex]\(-7\)[/tex]:

[tex]\[3x \cdot 2x = 6x^2\][/tex]
[tex]\[3x \cdot (-7) = -21x\][/tex]

Next, distribute [tex]\(-5\)[/tex] to both [tex]\(2x\)[/tex] and [tex]\(-7\)[/tex]:

[tex]\[-5 \cdot 2x = -10x\][/tex]
[tex]\[-5 \cdot (-7) = 35\][/tex]

2. Combine all the products:

[tex]\[6x^2 - 21x - 10x + 35\][/tex]

3. Simplify by combining like terms:

[tex]\[-21x\][/tex] and [tex]\[-10x\][/tex] are like terms (both have [tex]\(x\)[/tex] as a factor):

[tex]\[6x^2 - 31x + 35\][/tex]

So, the expression equal to [tex]\((3x - 5)(2x - 7)\)[/tex] is:

[tex]\[6x^2 - 31x + 35\][/tex]

Thus, the correct answer is:

[tex]\[6x^2 - 31x + 35\][/tex]