Answer :
We are asked to determine which expression has an estimated product of [tex]$45$[/tex]. The idea is to round each factor to the nearest whole number, multiply the rounded numbers, and compare the resulting estimated products with [tex]$45$[/tex]. Let's go through each expression step by step.
1. For the expression
[tex]$$44.7 \times 2.1,$$[/tex]
round the numbers:
- [tex]$44.7$[/tex] rounds to [tex]$45$[/tex],
- [tex]$2.1$[/tex] rounds to [tex]$2$[/tex].
Then, the estimated product is
[tex]$$45 \times 2 = 90.$$[/tex]
2. For the expression
[tex]$$7.5 \times 8.4,$$[/tex]
round the numbers:
- [tex]$7.5$[/tex] rounds to [tex]$8$[/tex],
- [tex]$8.4$[/tex] rounds to [tex]$8$[/tex].
Thus, the estimated product is
[tex]$$8 \times 8 = 64.$$[/tex]
3. For the expression
[tex]$$8.7 \times 5.28,$$[/tex]
round the numbers:
- [tex]$8.7$[/tex] rounds to [tex]$9$[/tex],
- [tex]$5.28$[/tex] rounds to [tex]$5$[/tex].
Therefore, the estimated product is
[tex]$$9 \times 5 = 45.$$[/tex]
4. For the expression
[tex]$$38.1 \times 7.3,$$[/tex]
round the numbers:
- [tex]$38.1$[/tex] rounds to [tex]$38$[/tex],
- [tex]$7.3$[/tex] rounds to [tex]$7$[/tex].
So, the estimated product is
[tex]$$38 \times 7 = 266.$$[/tex]
Among the four options, the expression [tex]$$8.7 \times 5.28$$[/tex] gives an estimated product of [tex]$45$[/tex].
Thus, the correct answer is the third option.
1. For the expression
[tex]$$44.7 \times 2.1,$$[/tex]
round the numbers:
- [tex]$44.7$[/tex] rounds to [tex]$45$[/tex],
- [tex]$2.1$[/tex] rounds to [tex]$2$[/tex].
Then, the estimated product is
[tex]$$45 \times 2 = 90.$$[/tex]
2. For the expression
[tex]$$7.5 \times 8.4,$$[/tex]
round the numbers:
- [tex]$7.5$[/tex] rounds to [tex]$8$[/tex],
- [tex]$8.4$[/tex] rounds to [tex]$8$[/tex].
Thus, the estimated product is
[tex]$$8 \times 8 = 64.$$[/tex]
3. For the expression
[tex]$$8.7 \times 5.28,$$[/tex]
round the numbers:
- [tex]$8.7$[/tex] rounds to [tex]$9$[/tex],
- [tex]$5.28$[/tex] rounds to [tex]$5$[/tex].
Therefore, the estimated product is
[tex]$$9 \times 5 = 45.$$[/tex]
4. For the expression
[tex]$$38.1 \times 7.3,$$[/tex]
round the numbers:
- [tex]$38.1$[/tex] rounds to [tex]$38$[/tex],
- [tex]$7.3$[/tex] rounds to [tex]$7$[/tex].
So, the estimated product is
[tex]$$38 \times 7 = 266.$$[/tex]
Among the four options, the expression [tex]$$8.7 \times 5.28$$[/tex] gives an estimated product of [tex]$45$[/tex].
Thus, the correct answer is the third option.