Answer :
Sure! Let's find which expression has an estimated product of $45.
We need to evaluate the product of each expression:
1. [tex]\(44.7 \times 2.1\)[/tex]
2. [tex]\(7.5 \times 8.4\)[/tex]
3. [tex]\(8.7 \times 5.28\)[/tex]
4. [tex]\(38.1 \times 7.3\)[/tex]
1. Evaluate [tex]\(44.7 \times 2.1\)[/tex]:
[tex]\[ 44.7 \times 2.1 \approx 94 \][/tex]
2. Evaluate [tex]\(7.5 \times 8.4\)[/tex]:
[tex]\[ 7.5 \times 8.4 \approx 63 \][/tex]
3. Evaluate [tex]\(8.7 \times 5.28\)[/tex]:
[tex]\[ 8.7 \times 5.28 \approx 46 \][/tex]
4. Evaluate [tex]\(38.1 \times 7.3\)[/tex]:
[tex]\[ 38.1 \times 7.3 \approx 278 \][/tex]
Now, we compare the results:
- [tex]\(94\)[/tex] (from [tex]\(44.7 \times 2.1\)[/tex])
- [tex]\(63\)[/tex] (from [tex]\(7.5 \times 8.4\)[/tex])
- [tex]\(46\)[/tex] (from [tex]\(8.7 \times 5.28\)[/tex])
- [tex]\(278\)[/tex] (from [tex]\(38.1 \times 7.3\)[/tex])
Looking closely, we see that the product [tex]\(46\)[/tex] (from [tex]\(8.7 \times 5.28\)[/tex]) is the closest to [tex]\(45\)[/tex].
So, the expression [tex]\(8.7 \times 5.28\)[/tex] has an estimated product closest to [tex]\(45\)[/tex].
We need to evaluate the product of each expression:
1. [tex]\(44.7 \times 2.1\)[/tex]
2. [tex]\(7.5 \times 8.4\)[/tex]
3. [tex]\(8.7 \times 5.28\)[/tex]
4. [tex]\(38.1 \times 7.3\)[/tex]
1. Evaluate [tex]\(44.7 \times 2.1\)[/tex]:
[tex]\[ 44.7 \times 2.1 \approx 94 \][/tex]
2. Evaluate [tex]\(7.5 \times 8.4\)[/tex]:
[tex]\[ 7.5 \times 8.4 \approx 63 \][/tex]
3. Evaluate [tex]\(8.7 \times 5.28\)[/tex]:
[tex]\[ 8.7 \times 5.28 \approx 46 \][/tex]
4. Evaluate [tex]\(38.1 \times 7.3\)[/tex]:
[tex]\[ 38.1 \times 7.3 \approx 278 \][/tex]
Now, we compare the results:
- [tex]\(94\)[/tex] (from [tex]\(44.7 \times 2.1\)[/tex])
- [tex]\(63\)[/tex] (from [tex]\(7.5 \times 8.4\)[/tex])
- [tex]\(46\)[/tex] (from [tex]\(8.7 \times 5.28\)[/tex])
- [tex]\(278\)[/tex] (from [tex]\(38.1 \times 7.3\)[/tex])
Looking closely, we see that the product [tex]\(46\)[/tex] (from [tex]\(8.7 \times 5.28\)[/tex]) is the closest to [tex]\(45\)[/tex].
So, the expression [tex]\(8.7 \times 5.28\)[/tex] has an estimated product closest to [tex]\(45\)[/tex].