College

Which expression can be used to solve for [tex]e[/tex] in the following proportion problem?

[tex]\frac{3}{e}=\frac{23}{97}[/tex]

A. [tex]23 \times 3 \times 97[/tex]

B. [tex]3 \times 97 \div 23[/tex]

C. [tex]23 / 97 \times 3[/tex]

D. [tex]3 / 97 \times 23[/tex]

Answer :

We start with the proportion

[tex]$$
\frac{3}{e} = \frac{23}{97}.
$$[/tex]

To solve for [tex]$e$[/tex], we can cross-multiply. This gives

[tex]$$
3 \times 97 = 23 \times e.
$$[/tex]

Next, we isolate [tex]$e$[/tex] by dividing both sides of the equation by [tex]$23$[/tex]:

[tex]$$
e = \frac{3 \times 97}{23}.
$$[/tex]

Thus, the expression that can be used to solve for [tex]$e$[/tex] is

[tex]$$
3 \times 97 \div 23.
$$[/tex]

Following these steps, we determine that the correct expression is [tex]$3 \times 97 \div 23$[/tex].