Answer :
We start with the proportion
[tex]$$
\frac{3}{e} = \frac{23}{97}.
$$[/tex]
To solve for [tex]$e$[/tex], we can cross-multiply. This gives
[tex]$$
3 \times 97 = 23 \times e.
$$[/tex]
Next, we isolate [tex]$e$[/tex] by dividing both sides of the equation by [tex]$23$[/tex]:
[tex]$$
e = \frac{3 \times 97}{23}.
$$[/tex]
Thus, the expression that can be used to solve for [tex]$e$[/tex] is
[tex]$$
3 \times 97 \div 23.
$$[/tex]
Following these steps, we determine that the correct expression is [tex]$3 \times 97 \div 23$[/tex].
[tex]$$
\frac{3}{e} = \frac{23}{97}.
$$[/tex]
To solve for [tex]$e$[/tex], we can cross-multiply. This gives
[tex]$$
3 \times 97 = 23 \times e.
$$[/tex]
Next, we isolate [tex]$e$[/tex] by dividing both sides of the equation by [tex]$23$[/tex]:
[tex]$$
e = \frac{3 \times 97}{23}.
$$[/tex]
Thus, the expression that can be used to solve for [tex]$e$[/tex] is
[tex]$$
3 \times 97 \div 23.
$$[/tex]
Following these steps, we determine that the correct expression is [tex]$3 \times 97 \div 23$[/tex].