Answer :
Let's solve each equation one by one to find the value of [tex]\( x \)[/tex] for each and identify which one gives a different result.
1. Equation 1:
[tex]\( 8.3 = -0.6x + 11.3 \)[/tex]
- Subtract 11.3 from both sides:
[tex]\( 8.3 - 11.3 = -0.6x \)[/tex]
[tex]\( -3 = -0.6x \)[/tex]
- Divide both sides by -0.6:
[tex]\( x = \frac{-3}{-0.6} \)[/tex]
[tex]\( x = 5 \)[/tex]
2. Equation 2:
[tex]\( 11.3 = 8.3 + 0.6x \)[/tex]
- Subtract 8.3 from both sides:
[tex]\( 11.3 - 8.3 = 0.6x \)[/tex]
[tex]\( 3 = 0.6x \)[/tex]
- Divide both sides by 0.6:
[tex]\( x = \frac{3}{0.6} \)[/tex]
[tex]\( x = 5 \)[/tex]
3. Equation 3:
[tex]\( 11.3 - 0.6x = 8.3 \)[/tex]
- Subtract 11.3 from both sides:
[tex]\( -0.6x = 8.3 - 11.3 \)[/tex]
[tex]\( -0.6x = -3 \)[/tex]
- Divide both sides by -0.6:
[tex]\( x = \frac{-3}{-0.6} \)[/tex]
[tex]\( x = 5 \)[/tex]
4. Equation 4:
[tex]\( 8.3 - 0.6x = 11.3 \)[/tex]
- Subtract 8.3 from both sides:
[tex]\( -0.6x = 11.3 - 8.3 \)[/tex]
[tex]\( -0.6x = 3 \)[/tex]
- Divide both sides by -0.6:
[tex]\( x = \frac{3}{-0.6} \)[/tex]
[tex]\( x = -5 \)[/tex]
After solving each equation, we have the following values for [tex]\( x \)[/tex]:
1. [tex]\( x = 5 \)[/tex]
2. [tex]\( x = 5 \)[/tex]
3. [tex]\( x = 5 \)[/tex]
4. [tex]\( x = -5 \)[/tex]
Therefore, the equation that results in a different value of [tex]\( x \)[/tex] is the fourth one: [tex]\( 8.3 - 0.6x = 11.3 \)[/tex], which gives [tex]\( x = -5 \)[/tex].
1. Equation 1:
[tex]\( 8.3 = -0.6x + 11.3 \)[/tex]
- Subtract 11.3 from both sides:
[tex]\( 8.3 - 11.3 = -0.6x \)[/tex]
[tex]\( -3 = -0.6x \)[/tex]
- Divide both sides by -0.6:
[tex]\( x = \frac{-3}{-0.6} \)[/tex]
[tex]\( x = 5 \)[/tex]
2. Equation 2:
[tex]\( 11.3 = 8.3 + 0.6x \)[/tex]
- Subtract 8.3 from both sides:
[tex]\( 11.3 - 8.3 = 0.6x \)[/tex]
[tex]\( 3 = 0.6x \)[/tex]
- Divide both sides by 0.6:
[tex]\( x = \frac{3}{0.6} \)[/tex]
[tex]\( x = 5 \)[/tex]
3. Equation 3:
[tex]\( 11.3 - 0.6x = 8.3 \)[/tex]
- Subtract 11.3 from both sides:
[tex]\( -0.6x = 8.3 - 11.3 \)[/tex]
[tex]\( -0.6x = -3 \)[/tex]
- Divide both sides by -0.6:
[tex]\( x = \frac{-3}{-0.6} \)[/tex]
[tex]\( x = 5 \)[/tex]
4. Equation 4:
[tex]\( 8.3 - 0.6x = 11.3 \)[/tex]
- Subtract 8.3 from both sides:
[tex]\( -0.6x = 11.3 - 8.3 \)[/tex]
[tex]\( -0.6x = 3 \)[/tex]
- Divide both sides by -0.6:
[tex]\( x = \frac{3}{-0.6} \)[/tex]
[tex]\( x = -5 \)[/tex]
After solving each equation, we have the following values for [tex]\( x \)[/tex]:
1. [tex]\( x = 5 \)[/tex]
2. [tex]\( x = 5 \)[/tex]
3. [tex]\( x = 5 \)[/tex]
4. [tex]\( x = -5 \)[/tex]
Therefore, the equation that results in a different value of [tex]\( x \)[/tex] is the fourth one: [tex]\( 8.3 - 0.6x = 11.3 \)[/tex], which gives [tex]\( x = -5 \)[/tex].